
AD-AD86 690 CALIFORNIA UNIV BERKELEY ELECTRONICS RESEARCH LAB Ffe 4/a
THE DESIGN METHODOLOGY OF DISTRIBUTED COMPUTER SYSTEMS.(U)
MAY 80 C V RAMAMOORTHY AFOSR-78-3630

UNCLASSIFIED AOSR-TR-80-0542 N



--- ------- i mi

OF

"AD

AO 6 6 9 0



A1FOSR.TR. 80-0 54 2

FINAL REPORTV

THE DESIGN METHODOLOGY

OF DISTRIBUTED COMPUTER SYSTEMS

by

C.V. Ramamoorthy

Final Technical Report

July 1, 1978 - June 30, 1979

GRANT AFOSR-78-3630

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

- ~~~~~tribUt i c I \ " iLt

80 14 013



pI

UNCLASSIFIED
SECURIT CATION OF THIS PAGE (When Dr . F

BEFORE COMPLETING PtK ,,
.....N _! . / , , 2- GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

• " trS. TYPE OF REPORT & PERIOD COVERED

THE.PESIGN METHODOLOGY OF DISTRIBUTED COMPUTER Final r .j

7I . AU THO R(s) . .. - .. - .- _ .. :$ . . .. = ] -

0 C. V. / amamoorthy I

-- (C 1  , AFOSR-78-363e4ArV
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMtNT. PROJECT, TASK

University of California, Berkeley -U R
Electronics Research Laboratory 7 ---
Berkeley, CA 94720 61102F 2304

11. CONTROLLING OFFICE NAME AND ADDRESS RU=" --

Air Force Office of Scientific Research/NM a a 1 "7 4
Bolling AFB, Washington, DC 20332 M WE4R W'AGES

99
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
15. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and Identify by block number)

Petri net reconfiguration strategies
concurrent system deadlock figure of merit
binary semaphore

critical region
adaptive reconfiguration

ABSTRACT (Continue on reverse aide if necessary and identify by block number)

Performance evaluation techniques for asynchronous concurrent systems is deve-
loped using the Petri net approach. Analysis techniques for deadlocks in asyn-
chronous concurrent systems is also explored. Moreover, a need for adaptive re-
configuration techniques is established along with necessary and sufficient con-
ditions for reconfigurability. Then a method is described for evaluating the

available reconfiguration strategies based on a figure of merit is described

DD JAN 7 1473 -OITION OF I.NOV 5 is O.SOL.TI UNCLASSIFIEDJ .



THE DESIGN METHODOLOGY

OF DISTRIBUTED COMPUTER SYSTEMS

by

C. V. Ramamoorthy

Final Technical Report

July 1, 1978 - June 30, 1979

AIR FORCE OFFIC"Z OF SCIENTIFIC RESZARCH (A.FSC)
NOTICE OF T T.. . T, L.
This teo: h h reviewed and iapprov ., . . iA AiFA i9O-12 (7b).

D~s~rtbut:=:e i h i ed.
A. D. BLul,
echnial Ir o:--mtion Officer

ELECTRONICS RESEARCH LABORATORY

College of nimmirn

Universitiy of C lifronia, Berkeley
94720



1. Introduction

In the past year, we have studied the design methodology for distri-

buted computer systems. We have developed analysis techniques to facili-

tate the design of distributed computer systems in general, and developed

a design methodology as veil as modelling techniques f or f ault tolerant

distributed computer systems in particular. The work that we have accom-

plished can be summarized as follows: (l) performance evaluation of

asynchronous concurrent systems (2) methods to detect deadlock in distri-

buted systems (3) design methodology and modelling techniques for fault-

tolerant computer systems.

The techniques for prediction and verification of the performance of

asynchronous concurrent systems can be classified into two categories

(1) deterministic models, and (2) probabilistic models. In deterministic

models, it is usually assumed that the task arrival times, the task

execution times, and the synchronization involved are known in advance

to the analysis. With this information, a very precise prediction of the

system performance can be obtained. This approach is very useful for per-

formance evaluation of real time control systems with hard deadline

requirements.

In probabilistic models, the task arrival rates and the task service

times are usually specified by probabilistic distribution functions. The

synchronization among tasks is usually not modelled, because otherwise the

number of system states becomes so large that it would be impossible to

perform any analyses. Probabilistic models usually give a gross prediction

on the performance of the system and are good for early stages of system

design when the system characteristics are not well understood. in this

paper, we focus on performance analysis of real time system and therefore



we have chosen the deterministic approach. In particular, in order to

model clearly the synchronization involved in concurrent systems, the

Petri net model is chosen.

In our approach, the system to be studied is first modelled by a

Petri net. Based on the Petri net model, a given system is classified

as either (Fig. 1.1): (1) a consistent system; or (2) an inconsistent

system (the definitions are given in later sections of the paper). Most

real-world systems fall into the first class and so we focus out discussion

on consistent systems. Due to the difference in complexity involved in

the performance analyses of different types of consistent systems, they

are further subclassified into: Mi decision-free systems; (ii) safe

persistent systems; and (iii) general systems. Procedures for predicting

and verifying the system performance of all three types are presented.

It is found that the computational complexity involved increases in the

same order as they are listed above.

Our work in system deadlocks concentrates on analysis techniques

for deadlocks in asynchronous concurrent systems. This includes multi-

progra-med systems, multiple processor systems and computer networks.

In particular, we study in detail deadlocks caused by conflicts in mutual

exclusive accesses to resources with the constraint that each resource

type has only one member. Deadlocks due to the erroneous nesting of

binary semaphores [Dij 71], nesting of critical regions (Sri 72, Sri 73a)

and nesting of monitors [Bri 73b, Hoa 74] are important members in the

above category. In addition to these, deadlocks due to conflicts in data

file lockings in distributed database systems also fall into the above

category.

Our woxk on fault tolerant distributed computer system

encompasses the issues of establishing a systematic design procedure,

-2- ~F



development of models and analysis techniques to analyze the recovery

process and to provide generalized design techniques. In striving for

this goal there are several issues that have to be faced. First one is

the lack of any established definition and classification of distributed

systems. Secondly, there is no established design methodology following

which, on could design reconfigurable distributed systems. Thirdly,

there are no modelling and analysis techniques which are directly appli-

cable to model and Analyze the distributed fault tolerance. In order to

overcome these difficulties, we have studied the following problem:

First, a generalized scheme for failure classification is proposed and

several failures occuring in distributed systems are identified and

classified according to the-proposed classification. A need for adaptive

techniques is established and various methods of reconfiguration are dis-

cussed. Based on our model a set of necessary and sufficient conditions

are developed for reconfigurability of a system. A systematic procedure

of expressing a given situation in terms of the model components is given

to test the validity of a system design. Basically, in this approach, a

failure is considered as an "observation event". A set of fault equations

are developed in terms of a set of basic events and failure transfer

functions. For a given failure a mincut set derived from the analysis

would indicate whether reconfiguration is feasible.

The next aspect of our reconfiguration study is to evaluate a set

of possible reconfiguration strategies and to select the one that is best

* suited for a given dynamic environment. The evaluation is based on the

type and nature of faults, performance degradation and other real time

constraints. In order to make a quantitative analysis to compare and to

select various reconfiguration strategies, a figure of merit (PFk41) in



defined. This FOHR is defined in terms of a vitality factor (VR),

feasibility factor (F R), reliability of that selected strategy in terms

of the reliability of the participating components (RR), and a normalized

cost factor (C ncf ). Second, a model, based on the graph theory is pro-

posed that would allow the representation of various attributes, like

reliability, distributed control etc for analysis. This Unified Graph

Model (UM) represents the actions or computations as a set of nodes of

a graph in which arcs connecting the nodes represent the flow of status.

Any entity to be analysed such as reliability of a path, or a subsystem

or a reconfiguration strategy or the consistency of a communication pro-

tocol etc., is expressed in terms of this model. Thirdly, the issue of

adaptive reconfiguration is studied. Specifically, it addresses two

fundamental questions: (1) feasibility of reconfiguation, 2) synthesis

and selection of reconfiguration strategy. The proposed model enables

the designer to analyze whether a given design would be able to recuperate

from the failures and also identifies the weakest spots in the design.

Lastly, we demonstrates the applicability of the proposed modelling and

analysis approaches, and presents an overview of a design for a candidate

distributed system based on the concepts developed in earlier chapters.

The requirements f or this example system are first established and the

architecture is presented. The proposed methodology, modelling and analysis

techniques are applied.

This report is divided into 8 section. Section 2 presents the tech-

niques for performance evaluation in concurrent system. Section 3 develops

the procedure of deadlock detection in distributed system. Section 4 con-

centrates on the reliability issue of distributed systems. Section 5 deals

with the issue of design methodology related to the design of reconfigurable



systems. Specifically, a design methodology is proposed and summarized.

Section 6 presents a detailed discussion on the study of adaptive recon-

figuration. Section 7 gives an example system to demonstrate the applic-

ability of our results. Lastly, section 8 gives a conclusion of the

report.

cAession For

NTIS iRA&I
DDC TADUo~iournc ed

Justifiction ,

By

A-, ."3or

t

, -vl= , - -.. i i. , . .



2. Performance Evaluation of Asynchronous Concurrent System

2.1 Review on Petri Nets

2.1.1 Basic Properties of Petri Nets

Petri nets IPET 77, AGE 75] are a formal graph model for modelling the

flow of information and control in systems, especially those which exhibit

asynchronous and concurrent properties. A Petri net contains two types

of nodes: the circles (called places) represent conditions and

the bars (called a token) at a'place indicates the holding of the condi-

tion of the place. A pattern of tokens in a Petri net (called a marking)

represents the state of the system.

To model the dynamic behavior of a system, the execution of a

process is represented by the firing of the corresponding transition.

The changes in system state are represented by the movements of tokens

in the net. The firing rules of Petri nets are:

(1) A transition is enabled if and only if each of its input places has

at least one token.

(2) A transition can fire only if it is enabled.

(3) When a transition fires:

(i) a token is removed from each of its input places; and

(ii) a token is deposited into each of its output places.

2.1.2 Application of Petri Nets in Control Flow Analysis

Petri nets have been used extensively to study the control flow of

computer systems. By analyzing the liveness, boundedness and proper

termination properties of the Petri net model of a computer system, many

desirable properties of the system can be unveiled.

A Petri net is live [HAC 75, HOL 71] if there always exists a firing

sequence to fire each transition in the net. By proving that the Petri net is

- -



live, the system is guaranteed to be deadlock free.

A Petri net is bounded [KAR 66, LIE 76] if for each place in the net,

there exists an upper bound to the number of tokens that can be there simul-

taneously. If tokens are used to represent intermediate results

generated in a system, by proving that the Petri net model of the system

is bounded, the amount of buffer space required between asynchronous

processes can be determined and therefore information loss due to

buffer overflow can be avoided. If the upper bound on the number of

tokens at each place is one, then the Petri net is safe. Programming

constructs like critical regions [BRI 72]J and monitors LBRI 73, HOA 74]

can be modelled by safe Petri nets.

A Petri net is properly terminating (GOS 71, POS 74] if the Petri net

always terminate in a well-defined manner such that no tokens are left in the

net. By verifying that the Petri net is properly terminated, the system

is guaranteed to function in a veil behaved manner without any side-

effects on the next initiation.

2.1.3 Extended Timed Petri Nets

In order to study the performance of a system, the Petri net model

is extended to include the notion of time [RAM 74]. In such extended nets,

an execution time, r, is associated with each transition. When a

transition initiates its execution it takes r units of time to complete

its execution. With the extended Petri net model the performance of a

computer system can be studied.

2.2 Performance Evaluation

The work that we have accomplished in performance evaluation is to

use Petri nets to find the maximum performance of the system, i.e., to

-7-,p~ I- - ~ - ' -~ --"wow_



find the minimum cycle time (for processing a task) of the system. As

pointed out before, different computational complexities are involved

in the analyses of system of different types. The approaches for

analyzing each type of system are studied separately in detail in the

following section. Before we come to the analyses, some definitions

are in order.

Definition. In a Petri net, a sequence of places and transitions,

P It IP 2t 2- .P , is a directed path from P 1to P nif transition t is

both an output transition of place P and an input transition crf place

P i forl1< i< n-1.

Definition. In a-Petri net, a sequence of places and transitions,

P 1t 1P 2t..* .P n is a directed circuit if P1t 1P 2t 2-P nis a directed path

from P 1toP narnd P 1 equals P n

Definition. A Petri net is strongly connected if every pair of places

is contained in a directed circuit.

In this report, we presented the performance analysis techniques

for stongly connected non-terminating Petri nets. Extensions to

analyze weakly connected Petri nets are quite straightforward so it

will not be discussed in this report.

2.2.1 Consistent and Inconsistent Systems

The first step involved in our approach to analyze the performance

of a system is to model it by a Petri net. A system is a consistent

(inconsistent) system if its Petri net model is consistent (inconsistent).

A Petri net is consistent (condition A) if and only if there exists a

non-zero integer assignment to its transitions such that at every place,

WC



the sum of integers assigned to its input transitions equals the sum of

integers assigned to its output transitions; otherwise, the system is

inconsistent. If a transition has n input arcs to a place, it is counted

as n input transitions to that place.

Figure 2.la is an inconsistent system and Fig. 2.1b is a consistent

system. In Fig. 2.1a, there does not exist an integer assignment to its

transitions to satisfy condition A. This can be verified by assigning

an integer variable to each transition and getting a contradiction in

trying to solve the simultaneous equations provided by condition A:

For place A: x + y = z i)

For place B: x = z (ii)

For place C: y = z (iii)

(ii) +(iii): x + y = 2z (iv)

and therefore eq. (iv) contradicts eq. (i).

Figure 2.1b is a consistent Petri net. If each transition is

assigned an integer of value 1, condition A is satisfied.

OA0

T TV'
_ K>

Figure 2. alAn inconsistent system Figure 2.1b A consistent system

The practical implication behind this system classification is that

the integer assigned to a transition is the relative number of executions

of that transition in a cycle. If a system is live and consistent, the

system goes back to its initial configuration (state) after each cycle

-9-

' y



and then repeats itself. If a system is inconsistent, either it produces

an infinite number of tokens (i.e., it needs infinite resources) or con-

sumes tokens and eventually comes to a stop. Mlost real-world systems

which function continuously with finite amount of resources fall into the

class of consistent systems, hence, we focused our discussion on con-

sistent systems and further sub-classified them into decision-free systems,

persistent systems and general systems. Performance analysis techniques

for each subclass are discussed in the following subsections.

2.2.2 Decision-free Systems

A system is a decision-free system if its Petri net model is a

decision-free Petri net (also known as marked graph [COtI 71, M!R 77]). A

Petri net is decision-free if and only if for each place in the net, there is

one input arc and one output arc. This means that tokens at a given place

are generated by a predefined transition (its only input transition) and

consumed by a predefined transition (its only output transition).

The computer configuration shown in Fig. 2.2 is a decision-free

system. The train system shown in Fig. 2.3 is another decision-free system.

The tokens in the net are used to represent trains. For the convenience

of the passengers, trains wait at stations for the next train to arrive

so as to allbw passengers to transfer between trains before leaving

stations. Similarly, the chaining operations in the CRAY-I computer RUS 78

can b modeled by a decision-free Petri net such as Fig. 2.3. The results

issued from one function unit are immediately fed into another functional

unit and so on. For a decision-free system, the maximum performance can

be computed quite easily. However, before we come to that result, we

need the following two theorems.

-10-



input queue

tap radcomputing processor ready

rewinding0
tape

1/0 onq
tape nT o or r computin

o 0
tape _

r 4 
computi

output queue

Figure 2.2 The Petri net model of a computer configuration



r1

1 0\r2 r37

rr

4/11 0 1

Figure 2.3 The Petri net model of" a train configuration

0 .-12- 

.;

_ _ _ _ _ _ . fr..



Theorem 2.1. For a decision-free Petri net, the number of tokens in a

circuit remains the same after any firing sequence. This result has

been proven by many researches [COM 71, MVR 77], so the proof is not

included in this report.

Definition. Let Si(ni) be the time at which transition ti initiates its

ni-th execution. The cycle time, Ci, of transition ti is defined as

lim Si(ni)/ni
n i -=

Theorem 2.2. All transitions in a decision-free Petri net have the

same cycle time.

Proof: Consider transitions ti and t in a decision-free Petri net.

Choose a circuit that contains both transitions ti and t . (Such a cir-

cuit must exist because the net is strongly connected.) Without loss in

generality, assume that initially there are Ma, Mb, Mc, Md and Me tokens

in the places in the chosen circuit as shown in Fig. 2.4. At time Si(ni),

ni -Me -Md -# initiations of transition t

< ni +Ma + -+M i

n i ni a -M eM d- - n coU i +M a +M M

Since Ma, M, Mc Md and Me are finite, as ni --, the left and right

hand side expressions approach Ci. i.e.,

C , >c >C i  c i  U c i

Therefore, all transitions in a decision-free Petri net have the

same cycle time, C.

i -13-

!5 i .. .. ..



FP

Figure 2.4 A cycle 'in a de~ision-fee Pe~ri net

: i -14-

_ _, , ......... ".........I..II...I......

- r 'Fi * -::: -
" -

- - ' - w --- -": - - - "



Theorem 2.3. For a decision-free Petri net, the minimum cycle time

(maximum performance) C is given by

C -ma k -~u1,2,...,q}

such that S i(ni) ai + Cni

T - ri - sum of the execution times of the
tiELk transitions in circuit k

Nk - E Mi M total number of tokens in the placesP in circuit k

q-number of circuits in the net

a, -constant associated with transition t

Lk -loop (circuit) k

i -number of tokens in place Pi

Similar results have been obtained in [REI 68, MVR 77]. The proof given

here uses a graph theoretical appraoch and is different from the previous

approaches. Based on this approach, we develop a very fast procedure to

verify the performance of a system.

Proof of Theorem 2.3: The proof is in two parts:

(A) Minimum cycle time, C > max : k-l,2,...,

(B) For C -max %: k l2--q there exists ait such that Si(

- ai + Cni and the firing rules are not violated.

Proof of A:

, of transitions that are < # of tokens in circuit enabled

simultaneously N Xk (Theorem 2.1)

-15-



processing power required T r
by circuit per cycle k t i ELk

< maximum processing power of the circuit per cycle time

= CN k

therefore Tk ._ CNk for every circuit and C > max{Tk/Nk k 1,2,..q}.

Lemma. For C - max {Tk/Nk, k - 1,2,...,q),

0 > T k -CN k for all circuits k.

Proof. C > Tk/Nk, k IN1,2,...,q
0 > Tk -CN k .

Proof of (B): Let C - max {Tk/Nk, k - 1,2,...,q

t M.. t. . tk

S. (n i ) $ (n) Sk(n k )

ai+Cn i  = a.+Cn. - ak+Cn k

In order not to violate the firing rules.

Finish time of the n1 -th execution of transition ti

< Initiation time of the ni +Mij execution of transition t

Si(ni) + r i < Sj(ni+Mij)

ai + Cni + ri aj +C(n i +Mij)

ai - CMij +r <a (i)

Similarly aj - CMjk + r (. a k  (ii)

() + (ii) ai - C(Mij +Mjk) + r i +r j ._a k

In general ai - C ( M + :r < as (iii)(u~v) IsR u v wr=R a

-16-



where R is a path from transition i to transition s. In order not to

violate the firing rules, we have to find a i's such that (iii) is

satisfied.

Procedure for assigning a,'s such that

a-C E M + r < a(iii)
(u,v) ER w -R

(1) Define the distance from transition ti to transition tj (tt adjacent

to t ) to be ri - CM ij .

ti t.

r Mij r

(2) Find a transition ts, which is enabled initially and assign 0 to as -

(3) Assign au to each transition, tu, such that au is the greatest dis-

tance froin t to t

i.e. a = maxj Rr- 1 Mf 3v
twR (u,v) CR

where R is a path from t to t .s u

Such an assignment of ai's exists because by the Lemma, Tk-CNk<O,

the greatest distance between any two nodes is finite and the correspond-

ing path would never contain a loop. Q.E.D.

A drawback of the above approach is that all circuits in the net

must be enumerated; this can be very tedious. In the design of computer

systems, the required performance is usually given. With this information,

the performance of a system can be verified very efficiently. By the

Lema, the performance requirement (expressed in cycle time, C) can be

-17-
qV



satisfied if and only if CNk -T k > 0 for all circuits. This can be

verified by the following procedure.

A procedure for verifying system performance

(1) Express the token loading in an nxn matrix, P, where n is the number

of places in the Petri net model of the system. Entry (A,B) in

the matrix equals x if there are x tokens in place A, and place A

is connected directly to place B by a transition. Matrix P of the

example system in Fig. 2.5 is shown below:

A R C D E F G

A 0 '0 0 0

matixeqFl to ri ~ (excut oe o rniini)i sa

C00 0t 10 10 0__

Matrix P

(2) E.:,'ress transition time in an nxn matrix, Q. Entry (A,B) in the

matrix equals to r i (execution time of transition i) if A is an

input place of transition i and B is one of its output places.

Entry (A,B) contains the symbol "w" if A and B are not connected

directly as described above. Matrix Q for the example system is:

A B C D E F G

S-I

Matrix Q

B, w. w 5I

C1- W-w
"

w 12
'

w j I



64

5 -

C®

E0 O F
r 4-3

Figure 2.-5A computer configuration with theexecution times of its processes

-19-



(3) Compute matrix CP-Q (with n-w - oo for n N), then use Floyd's

algorithm (Flo 62] to compute the shortest distance between every

pair of nodes using matrix CP-Q as the distance matrix. The

result is stored in matrix S. There are three cases:

(a) All diagonal entries of matrix S are positive (i.e.,

CNk -Tk >0 for all circuits) -- the system performance is

higher than the given requirement.

(b) Some diagonal entries of matrix S are zero's and the rest

are positive (i.e., CNk -Tk -0 for some circuits and

CN k -Tk >0 for the other circuits) - the system performance

just meets the given requirement.

(c) Some diagonal entries of matrix S are negative (i.e.,

CNk -T k <0 for some circuits) - the system performance is

lower than the given requirement.

In the example, for C-15, CP-Q is

A B C D E F G
A I oo 10 1 10 +00 oo o 1 o
B Ioo 1 00 10 1 10 oo I oo1 001
c 1 0 oo oo -5 oo oo

I o I no OO I -4 OOE i -3 io o oo oo -3

F 1 -3 i o oo oo _

G -2 1 oo, oo oo I oo

After applying Floyd's algorithm to find the shortest distance between

every pair of places we have:

A B C D E F G

A 1 0 1 2 1. 1 o10 5 6 2
B a 1 21 10 ' 10 5 6 2C I-10 -8 0 0i -1- -4 -81

D 9 -7 1 -4 1 -4 ,-7E - 5 --- 1 5 1 5 1 1 -

,5 -3 5 1 5 1 0 1 - I
I t- T -LI L± "I - LW-,2 1-- ' 0 1 8 1, 8 1 3 1 4 1 0

Matrix S

-20-



Since the diagonal entries are non-negative, the performance

requirement of C 15 is satisfied. Moreover, since entries (A,A), (C,C),

MEE) and (G,G) are zero's, Cl-5 is optimal (i.e., it is the minimum

cycle time). In addition, when a decision-free system runs at its highest

speed, CN k equals to T k for the bootleneck circuit. This implies that

the places that are in the bottleneck circuit will have zero diagonal

entries in matrix S. In the example, the bollteneck circuit is At 1Ct 2Et 4Ct 5

With this information, the system performance can be improved by either

reducing the execution times of some transitions in the circuit (by using

faster facilities) or by introducing more concurrency in the circuit (by

introducing more tokens in the circuit). Which approach should be

taken is application dependent and beyond the scope of this thesis.

The above procedure can be executed quite fast. The formulation

of matrices P and Q takes O(n 2) steps. The Floyd algorithm takes O(n 3

steps. As a whole, the procedure can be executed in O(n 3) steps. There-

fore, the performance requirement of a decision-free system can be

verified quite efficiently.

2.2.3 Safe Persistent Systems

A system is a safe persistent system if its Petri net model is a

safe persistent Petri net. A Petri net is a safe persistent Petri

net if and only if it is a safe Petri net and for all reachable markings,

a transition is disabled only by firing the transition. It differs

from a decision-free Petri net in that it may have mere than one input

(output) arcs to (from) a place. However, like a decision-free Petri

net, it models a deterministic system. In a persistent Petri net, if a

token enables a transition, it will be consumed by that transition only,

i.e., a token will never enable two or more transitions simultaneously.

-21-



Figure 2.6a shows a persistent Petri net. It models the operations

of a double buffer input port. Transitions t 1 and t,, represent fetching

the contents of buffer 1 and buffer 2 respectively. Transition t 3 re-

presents storing the input into the memory. To compute the performance

of the system, we first transform it into a decision-free system and

then use the algorithm discussed in the previous subsection to compute

the system performance.

A persistent Petri net can be transformed into a decision-free

Petri net by tracing the execution of the system for one cycle. For

example, Fig. 2.6b is the decision-free system corresponding to the

persistent Petri net shown in Fig. 2.6a. Places A1 and A 2i i.26

represent two different occurrences of place A in Fig. 2.6a in a cycle.

Condition A 1holds when transition t 1 is enabled. Similarly, place D

is duplicated into D1and D 2* Condition D 1holds when transition t 3is

enabled and transition t 2 will be enabled after firing t 3 * ConditionD2

holds when transition t 3is enabled and transition t 1will be enabled

after firing t 3 '

Initially there is a token in places A and B and transition t 1 is

enabled in Fig. 2.6a, and therefore there is a token in places A 1and B

in Fig. 2.6b. After firing ti, a token is deposited into places C and D

in Fig. 2.6a. This is represented by depositing a token in places D 1and

C in Fig. 2.6b. By following the execution of the system for a cycle,

the corresponding decision-free system can be generated. The system

performance can then be computed by the procedure discussed in

Section 2.2.2.

2.2.4 General Systems

A system is a general system if its Petri net model is a general

Petri net. A Petri net is a generai Petri net if it is a consistent

-22-



3

Figure 2. 6 a A persistent system

A1  B

t ~ tI

20 Tt
0A2

Figure 2.6b The decision-free system expanded
from figure 3.9a

_23-



Petri net and there exists a reachable marking such that the firing of

a transition disables some other transitions. Figure 2.7 shows a

general Petri net. Figure 2.7 models the communication protocol from

process PI to processes P2 and P3, such that the difference in the

number of messages sent from P to P2 and P3 is always less than three.

It is not a decision-free Petri net becasue place A has more than one

input and output arcs. It is not a persistent Petri net because, in the

configuration shown, the execution of either transition t2 or transition

t4 disables the other transition. This introduces the nondeterministic

characteristic of the system.

General systems are very difficult to analyze. In the next theorem,

we show that it is unlikely that a fast algorithm exists to verify the

performance of a general system. A method of computing the upper and

lower bounds of the performance of a conservative general system (Lie 761

is proposed. For a non-conservative general system, no good heuristics

are known to the authors and further research is needed.

Theorem 2.4. Verifying the performance of a general Petri net is an

NP-complete problem [Kar 72].

Proof:

(i) It is in NP because we can guess the otpimal schedule. The non-

deterministisms of the general Petri net are resolved and the

general Petri net can be transformed into a decision-free Petri

net. The performance can then be verified by the procedure

discussed in Section 2.2.2.

(ii) It is NP-complete because the set partitioning problem (an NP-

complete problem) can be reduced to the above problem.

-24-



Proce~ss P.

A

0 F

D D

process 2prcsP3

Figure 2.? A general system (a communication protocol)

-25-



The Set Partition Problem [Kar 72]

Given a set of integers, S ={xl,x2,...,xn}, partition it into two

subsets, S1 and S2 such that (condition B):
2n

E xi
S =S US and S 1 'S =0 and xi  x i=l

1 2 1 2 iES iES 2  2

Reduction

Given S = {xlx 2,... ,xn}, generate the general Petri net shown in

Fig. 2.8. It is easy to see that

nExi
i=l

the system has minimum cycle time, C =- 2 , if and only

if the set S satisfies condition B.

A Method to Compute Upper and Lower Bounds of the Performance of A

Conservative General System

(A) Upper Bound:

We choose a schedule which satisfies the execution frequency

requirement and then the algorithm discussed in section 2.2.2 to

find the cycle time of the system.

(B) Lower Bound:

(a) Find a non-zero integer assignment to the places such that the

sum of integers assigned to the input places of a transition

equals the sum of integers assigned to the output place'. Such

an integer assignment must exist because the system is conserva-

tive [Lie 76]. Intuitively, the integer assigned to a place

represents the relative processing capability of a token at

that place. The weighted execution time of a transition is

equal to the produce of the transition execution time and the

-26-



79

0 /lo
Unn

=00

Figure 2.8 A reduction of the set partition probleci
to a general Petri net

-27-



sum of the integers assigned to its input places.

B,1
0 t 2  E,2

A,3 C 3

(b) Assume that all tokens in the net are busy all the time. Then

C x weighted processing capability > sum of weighted

execution time

Cx siM r,

sifiri

E siM i

where si  sum of integers assigned to the input places of

transition i

-28-

=a-= 
* -:7 - - ___... ".. .. . -



3. System Deadlock

3.1 An Approach to Deadlock Prevention

As pointed out in the introduction, the scope of our study on system

deadlock is restricted to systems using: (i) binary semaphores; (ii)

cricital regions; and (iii) monitors as their interprocess synchroniza-

tion mechanisms. This enforces structural design and greatly reduces

the computational complexities involved in the analyses. Based on the

above synchronization constructs, a formal graph model (the request-

possession graph) is developed to model deadlocks in these systems. The

necessary and sufficient conditions for the occurrence of a deadlock are

derived. Based on these conditions, techniques for uncovering potential

deadlocks in a system are developed, and a systematic appraoch for the

construction of deadlock-free systems using critical regions and/or

monitors is proposed.

3.1.1 The Request-Possession Graph Model

An request-possession graph (an RP-graph) is a formal graph model

developed to study deadlocks in systems which use binary semaphores,

critical regions and/or monitors as their synchronization mechanisms.

It is a directed bipartite graph with two types of nodes and two types

of arcs (Fig. 3.1b): (1) resource reference nodes (which are called

reference nodes in short in the rest of the chapter), and (2) resource

nodes. The reference nodes are used to represent accesses of resources

in a system and the resource nodes are used to represent resources. A

dotted arc directed from a reference node to a resource node represents

the request of the resource from the reference node. A solid arc

directed from a resource to a refereunce node represents the assignment

-29-



Process X Process Y

P(a) P(b)

use printer use tape drive

P(b) P(a)

use tape drive use printer

V(b) V(a)

V(a) V(b)

Figure 3-la An example of system deadlock

a

P(a) / /P(b)

/ I

/() P (a)

Figure 3.1b The request-possession graph

of figure 4.4a

-30-



of the resource to the reference node. From the above description, it

seems that the RP-graph is very similar to Holt's general resource graph.

However, they are quite different from each other. Holt's approach

only models a snapshot of the resource state of a system while an RP-

graph models the complete dynamic resource allocation characteristics

of a system. The distinction will become clear later in our discussion.

The RP-graph of a program can be generated by scanning through the

program once. The procedure for constructing the RP-graph of a con-

current system can be best illustrated by an example. Figure 3.1 shows

a concurrent system together with its RP-graph. For each binary

seamphore (P or V operation) in the system, there is a corresponding

resource node (reference node in the RP-graph. For each P operation in

the system, a dotted arc is drawn from the corresponding reference

node to the corresponding resource node. Solid arcs are then drawn from

the resource nodes to a reference node for the resources that have been

possessed by the process when it begins to execute the reference node.

For example, solid arcs are drawn from resource nodes a and b to reference

node V(b) of process X because both resources a and b are possessed by

the process when it begins to execute instruction V(b). Following the

above procedure, the RP-graph of a system can be constructed in linear

time to the number of instructions in a program. As the releases of

resources will never bring a system into a deadlock, the reference nodes

corresponding to V operations are omitted in RP-graphs.

3.1.2 The Necessary and Sufficient Conditions for Deadlocks

The necessary condition for deadlocks developed in this section is

applicable to systems using binary semaphores, critical regions and/or

-31-

#W I _ __ _ a



monitors as their synchronization mechanisms. The sufficient condition

for deadlocks developed is only applicable to systems using critical

regions and/or monitors as their synchronization mechanisms. This is

due to the unstructureness of semaphores and are explained later in this

section.

Definition. A system is safe if and only if it is deadlock-free. A

system is unsafe if and only if it potentially can get into a deadlock

state.

Theorem 3.1. If a system is unsafe, then there is a directed cycle

in its RP-graph.

Proof: By definition, an unsafe system can potentially get into a dead-

lock state. In that state, there is a chain of processes such that

each process holds one or more resources that are being requested by the

next process in the chain [Cof 71]. Because of the way that the RP-graph

is constructed, it can easily be seen that this chain of resource requests

and resource possessions corresponds to a directed cycle in the RP-graph.

Theorem 3.1 only gives the necessary condition for an unsafe system. The

existence of a directed cycle in the RP-graph of a system does not imply

that the system is unsafe.

The RP-graph can be generated automatically in linear time to the

number of instructions in a system. The Floyd algorithm can be used to

detect the existence of directed cycle in the RP-graph, which has

execution time O(n 3) steps where n is the number of nodes in the generated

RP-graph. As a result, the proposed algorithm can be executed in poly-

nomial time to the number of instructions in a system.

Before we discuss the sufficient condition for a safe system, some

extensions have to be made on the RP-graph. The resultant model is

-32-

,-.r --- w ..,-' .. . ... .



called the augmented request-possession-graph (the ARP-graph). It is very

similar to the RP-graph except that each reference node, r, is given a

set of names, Srt such that s ES r if and only if:

(1) s is the name of the process when it begins to execute node r

or (2) s is the name of a resource that has been possessed by the

process when it begins to execute node r (i.e., there exists

a solid directed arc from resource s to node r in the RP-graph).

Theorem 3.2. A system is safe if and only if its ARP-graph does not

contain a directed cycle with distinct names on its reference nodes (i.e.,

S uS - 0 for all pairs of nodes, u and v, in the cycle).u v

Proof: Let P be the proposition that there is a directed cycle with

distinct names in an ARP-graph. For a given directed cycle in an ARP-

graph, define the state of a process as the state at which the process

begins to execute the instruction which corresponds to the reference

node of the process in the cycle. Define the system state as the state

composition of all the processes in the system.

(A) The Sufficient Condition

- P _-)> System is safe

i.e. System is unsafe -> P

System is unsafe -> there exists a deadlock state, q

there exists a directed cycle

in the RP-graph (Theorem 3.1)

=> P (because no resource can be

possessed by two processes in

state q)

-33-



(B) The Necessary Condition

System is safe =>-P

We first assume that a system is safe and P, then show that there

is a contradiction. Let stata q be the system state that corresponds to

the directed circuit in the ARP-graph. If the system is safe and P,

there are two cases:

(i) State q is reachable from the initial state:

This means that the system can potentiall get into a state in which

there exists a chain of processes such that each process holds one or

more resources that are being requested by the next process in the chain.

That is, the system can potentially get into a deadlock state. This

produces a contradiction.

(ii) State q is not reachable from the initial state:

Without loss in generality, consider the case shown in Fig. 3.2.

Assume that in state q, process X is in region c, process Y is in region

f and process Z is in region i. It is easy to see that in order to reach

state q, region e in process Z has to be executed before region e in

process Y. This type of precedent relationships are shown by the arrows

ina the figure. Assume that there are implicit arrows pointing from one

instruction to the next instruction in a process. There are two sub-

cases to be considered:

(a) There is no directed cycle in the graph:

This implies that there exists an execution sequence that can

bring the system into state q. In particular, the sequence can

be constructed by executing ready instructions (i.e., instructions

whose parent instructions have been executed) of a process as far

-34-



reima region region g[region a [re ion e

rg-ob reglon~ P region h

-1re2ion c region f region i
active pt. aciv pt F cietL LL acieaLv t

Figure 3.2 A deadlock-free system

411 -35-



as possible until the process comes to an instruction which has an

unexecuted parent instruction. The well-structured property of

critical regions and monitors guarantees that a process releases

all the resources (except those it possesses in scate q) that it

has acquired during the execution before the process is blocked

(condition A). This guarantees that the execution will not create

any new blockades due to resource sharing to the following executions.

The acyclic graph property guarantees that there always exists some

process ready to be executed until the system comes to state q. As

a result, state q can be reached and this produces a contradiction.

(b) There is a directed cycle in the graph:

This means that condition P holds at an earlier stage in the

execution. By repeating the above procedure, either condition (i)

or condition (a) will hold finally. This produces a contradiction.

Theorem 3.2 is true for a system which uses critical regions and

monitors as its synchronization mechanisms, however, it does not hold

for a system that uses semaphores as its synchronization mechanism. From

this point onwards, when we talk about systems, we mean systems which use

critical regions and/or monitors as their synchronization mechanisms.

One application of theroem 3.2 is to prove the safety of a system.

Before we can use the Theorem, we have to develop an effective procedure

to determine whether there exists a directed cycle with distinct labels

on its nodes in a labelled directed graph. However, it is shown in the

following theorem that the above problem is NP-complete (i.e. it is

unlikely to have a fast algorithm to solve the problem).

Theorem 3.3. It is NP-complete to find a directed cycle with distinct

labels on its nodes in a labelled directed graph.

-36-

T___7- -



Proof:

(A) The problem is NP because we can guess a directed cycle that

satisfies the requirement and verify our guess by tracing the cycle in

the graph in polynomial time to the number of nodes in the graph.

(B) The problem is NP-complete because the 2-3 satisfiability problem

(an NP-complete problem) can be reduced to the above problem.

The 2-3 satisfiability problem [Aho 76]:

To find whether there exists a satisfying assignment (an assignment

that gives the expression a true value) to a boolean expression which

has the following properties:

(a) every clause contains three literals

(b) every variable x appears exactly twice as x and twice as x

Reduction

Let S = CI C ... C be an instance of the 2-3 satisfiability
1 2 3

problem. Assume that clause Ci contains variables y , y and y3 .

Construct a labelled directed graph, G, as shown in Figure 3. 3.

i i i i i

If y xthen label: Yb = x2' Yc = x3 andYd 
= x 4

i = x and y i
If yi x then label: Ya =x1' Yb = x3' Yc " 2 an d = 4

Claim:

Expression S is satisfiable if and only if there is a directed cycle

with distinct labels on its node in graph G.

Theorem 3.3 states that it is NP-complete to determine the safety

of a system. However, if the number of critical regions in a system is

fixed, the computation complexity involved in determining the safety

of the system is in polynomial to the size of the system (where the size

of a system is defined as the number of reference nodes, n, in its

-37-



c2

1 2 32
Y y y y yac a c a

2Ip U2 133

i+1

-38



ARP-.graph). It is because there a~re at most k nodes in a cycle which

has distinct names on its nodes. As a result, there are at most 2 ksuch

cycles. By trying to construct such a cycle from each reference nodes

in the ARP-graph, we can verify the safety of a system in 0(2 kn 3) steps.

The details of the procedure will not be discussed in this report

3.1.3 An Approach to the Design of Deadlock-Free System

Theorem 3.4

If all critical regions and /or monitors are linearly ordered, and

all processes enter a critical region or a monitor at a higher level

before those at a lower level, deadlock cannot occur.

Proof:

The theorem is a special case of the theorem on resource allocation

given in [Hay 68]. By the imposition of a linear ordering on the

critical regions and/or monitors, a circular wait cannot occur and

therefore the system is deadlock-free.

The above strategy imposes severe constraints on the nesting of

critical regions and/or monitors. Two of its drawbacks are: (1) reducing

the concurrency in a system; and (2) reducing the transparency of a system.

One approach to remedy some of the drawbacks is to group critical regions

and/or monitors into sets allowing unordered nesting within each set. A

linear ordering is then imposed among sets. A process must not enter a

critical region or a monitor in a set at a higher level after it has

entered one in a set at a lower level. The linear ordering among sets

guarantees that deadlock cannot occur due to improper nesting of critical

regions or monitors in different sets. The deadlock-free condition

within each set is verified by the deadlock detection procedure discussed

-39-



in section 3.1.1. This approach provides: (1) good programming style;

(2) higher degree of concurrency; (3) no run time overhead; and

(4) automatic deadlock detection during compilation.

3.2 Deadlock Detection in Distributed Data Bases

In a distributed data base, deadlocks can be detected quite easily

by using a centralized control strategy. Whenever a process locks or

releases a data file, it gets the permission from a central control node.

This control node maintains a demand graph for the whole system and

checks for deadlocks by searching for a directed cycle in the graph.

However, the approach is inefficient. All data accesses have to get the

permissions from the central control node although they may not cause

any deadlocks. This slows down the system, wastes the system communication

bandwidth and unnecessarily congests the communication subsystem. Above

all, if the control node goes down, it is very difficult to recover the

system from the failure.

Another approach f or deadlock detection is to store the resource

status locally at each site. Periodically, a node is chosen to be the

control node. Resource status are then sent from each site to the control

node for analyses. This remedies most of the drawbacks of the centralized

approach. However, due to the inherent communication delay, the chosen

control node may get an inconsistent view of the system, and it may make

a wrong conclusion.

We have developed three approaches to construct consistent demand

graph. In the approaches, it is assumed that each transaction is given

a unique name. (A transaction is defined as a sequence of actions which

can be a request, lock or unlock operations.) This can be achieved by

-40-



naming a transaction with the name of its site of origin together with

the initiation time of the transaction [Ber 78].

3.2.1 A Two Phase Deadlock Detection Protocol

In this protocol, each site maintains a status table for all

resources that are owned by the site. For each resource, the table

keeps track of the transaction that has locked the resource (if one exists)

and the transactions which are waiting for the resource (if they exist).

Periodically, a node is chosen as the control. The chosen control node

performs the following operations:

(1) Broadcasts a message to all nodes in the system requesting them to

send their status tables and waits until all tables have been received.

(2) Constructs a demand graph for the system:

(a) If there is no directed cycle, the system is not in a deadlock

and the node releases its control.

(b) If there is a directed cycle, the node continues its execution.

3) Broadcasts a second message to all nodes in the system requesting

them to send their status tables and waits until all tables have been

received.

(4) Constructs a demand graph for the system using only transactions

that are reported in both the first and the second reports:

(a) If there is no direct cycle, the system is not in a deadlock

and the node releases its control.

(b) If there is a directed cycle, the system is in a deadlock.

The node reports the deadlock situation to a deadlock resolver.

The above procedure uses a two phase commit protocol. By only

using transactions that are reported in both the first and the second

status reports in constructing the demand graph, a consistent system

-41-



state is obtained. The main advantage of this protocol is its simplicity.

The drawback is the requirement of two status reports from each site

before a deadlock can be determined. In general, the protocol is good

for systems in which deadlocks occur only infrequently.

3.2.2 A One Phase Deadlock Detection Protocol

In this protocol, a deadlock is detected in one communication phase.

Each site maintains a resource status table for all local resources and

a process status table for all local processes. The resource status

table keeps track of the transactions that have locked a local resource

and the transactions which are waiting for a local resource. The process

status table keeps track of the transactions that are being owned by

processes local to the site. The system operates according to the

following rules:

(A) A process at site S requests a resource -- a transaction (S,t) is

created, where S is the site name and t is the time at which the

transaction is initiated. An entry (S,t,w) is put into the process

status table of the site indicating that transaction (S,t) is

waiting for a resource. A message is sent to acquire the resource.

(B) Site T receives a message that transaction (S,t) requests a resource

local to T:

Mi If the resource is free, the resource is assigned to the

transaction and a lock is set on the resource. An entry (S,t,a)

is created in the resource status table of the site and a

message is sent to notify the requesting process of the

assignment.

(ii) If the resource is being locked, an entry (S,t,w) is created

in the resource status table of the site and a message is sent

-42-



to acknowledge the receiver of the request.

(C) Site S receives a resource assignment message for transaction (S,t)

-- the entry (S,t,w) in the process status table is changed to

(S,t,a).

(D) Site S receives a request acknowledgement message for transaction

(S,t) -- do nothing.

(E) A process at site S releases a resource corresponding to transaction

(S,t) -- the entry (S,t,a) is removed from the process status

table and a message is sent to notify the release.

(F) Site T receive a resource message corresponding to transaction (S,t)

-- the resource is unlocked and the entry (S,t,a) is removed from

the resource status table.

Periodically, a node is chosen as the control. The chosen control

node performs the following operations:

(1) Broadcast- a message to all nodes in the system requesting them to

send their status tables and waits until all tables have been received.

(2) Constructs a demand graph for the system using only transactions for

which the resource status table agrees with the process status

table (i.e. identical entries exist in both the resource status

table and the process status table).

(a) If there is no directed cycle, system is not in a deadlock

and the node releases its control.

(b) If there is a directed cycle, system is in a deadlock. The

node reports the deadlock situation to the deadlock resolver.

In order to show that the above protocol is correct, we have to

prove that the existence of a directed cycle in the constructed demand

graph implies the occurrence of a deadlock state.

-43-



Theorem 3.5

A system is in a deadlock if and only if there is a directed cycle

in the demand graph constructed by the above procedure.

Proof:

(A) The necessary condition

If a system is in a deadlock, there is a chain of processes such

that each process locks a file which is being requested by the next

process in the chain. This condition will remain valid until the deadlock

is resolved. This implies that there is a directed cycle in the

constructed demand graph although the information are collected at

different times.

(B) The sufficient condition

Assume that there is a directed cycle in the constructed demand

graph and assume that there is a master who keeps track of the absolute

times of the occurrences of the activities in the system. (The absolute

times are used in the proof only and are not needed in the protocol).

With no loss in generality, assume that the resources and the processes

involved in the cycleare at different sites in the system. There are

two cases to be considered:

(i) The latest report is a process status report (Figure 3.4)

Assume that t 9is the latest time. From the resource status

report of R 1and the process status report of process P1 , we know that

resource R1is possessed by process P 1from time t i to t . From the

resource status report of R1, we know that process P 2 is waiting for

resource R I at time t,. Since resource R1is possessed by process P 1

from time t to t 9 process P 2 is still waiting for resource R1at time



0 
OzR

Pa

0 R n R

Figure 3.4

-45-

id;NI p



t 9. By continuing this argument, resource Rnis possessed by process

P nat time t 9. As a result, at time t 9, there is a chain of processes

such that each process holds one resource that is being requested by

the next process in the chain. This implies that the system is in a

deadlock.

(ii) The latest report is a resource status report

The argument is similar to that given in (i).

The one phase deadlock detection protocol does not need a second

comuntcation phase to confirm the occurrence of a deadlock. However,

more information has to be stored at each site and more data have to be

transferred in a communication phase. The protocol is good for systems

in which deadlocks occur only infrequently and the communication cost

depends on the number of messages being sent rather than the length of

the messages.

3.2.3 A Hierarchical Deadlock Detection Protocol

In very large distributed data bases, it may be very costly to

transfer all status tables to one site. In particular, if the access

pattern is very localized, it will be of great advantage if deadlocks

are detected locally. In these systems, one approach is to group sites

which are close to each other into a cluster. Periodically, a node in

a cluster is chosen to be the control. This control node executes the

one phase deadlock detection protocol and constructs a demand graph for

the cluster. The result obtained by the control node together with the

intercluster accesses (which should be relatively few) are then sent to

a central control node (which is also chosen dynamically). Based on

these information, the central control node constructs the demand graph

of the whole system. In this way, deadlocks within a cluster are detected

-46-



by the control node of the cluster and deadlocks among clusters are

detected by the central control node.

Defintion

A transaction is a local (intercluster) transaction if and only if

the requesting process and the requested resource are in the same

(different) cluster(s).

A Hierarchical Deadlock Detection Protocol

(A) Periodically, a central control node is chosen. This node performs

the following operations:

(1) Chooses dynamically a control node for each cluster.

(2) Broadcasts a message to all control nodes requesting them to

send their status information and wait-for relations of the

interciuster transactions.

(3) Constructs a demand graph of the system using both the inter-

cluster transactions for which the resource status report

agrees with the process status report and the wait-for relations

(which are defined later) sent from the control nodes. If there

is a directed cycle in the demand graph, the system is in a

deadlock, otherwise, the system is not in a deadlock.

(B) Whenever a node recieves a status report request from the central

control node, it performs the following operations:

(1) Broadcasts a message to all nodes in the cluster requesting

them to send their status tables aud waits until all tables

have been received.

(2) Constructs a demand graph for the cluster using only local

transactions for which the resource status table agrees with

the process status table.

-47-



(3) Computes the transitive closure of the demand graph. lf there

is a directed cycle in the demand graph, the system is in a

deadlock.

(4) Derives the wait-for relations from the transitive closure of

the demand graph. A process/resource is waiting for a

process/ resource if and only if:

(a) the processes and/or the resources are in some intercluster

transactions.

Mb The process/resource is waiting directly or indirectly

for the process/resource (i.e. there is a directed arc

pointing from the process/resource to the process/resource

in the transitive closure of the demand graph).

(5) Send the intercluster transaction status information and the

wait-for relations to the central control node.

The above concept can be extended into many levels. In this way,

a hierarchy of control nodes can be constructed. Due to the local access

pattern of a system, the amount of information that have to be sent from

a child control node to its parent can be greatly reduced.

-48-



4 Classification of Failures

4.1 Classification Methods

In order to develop generalized techniques and desired architectural

features for failure detection, isolation, and recovery, it is essential

to classify the failures further into several categories that reflect the

generalized failure detection and recovery techniques. Such classificati~n

can be done based on several of the following criteria. These are 1)

failure detection and correction, 2) physics of failures, and 3) consequences

of failures in relation to system design and operation. The first method

of classification divides the failure modes into different categories, each

having the same or similar failure detection and correction mechanisms.

Such classification is dependent on the existing system architectures and

their implemencations and does not really help the designer understand the

behavior of the system to improve its fault tolerance.

In the second method of classification, which is based on the physics

of a failure, the physical behavior of a component under investigation is

considered in order to determine the nature and causes of a failure. This

classification is quite satisfactory at a component level but fails to

consider the logical failures and the failures at system and subsystem

levels because of the innumerable physical parameters involved.

4.2 Proposed Classification

In order to alleviate the problems associated with these two methods

of classification, we adopt a classification technique based on the conse-

quences, or the observed effects and pragmatic considerations. In this

classification we consider the consequences of a failure rather than its

causes, since it is the effect of a failure that is eventually detected.

-49-



In this way, all the failures having the same observable effect could be

considered uniformly. Such classification facilitates the use of the

same failure behavior models for all failures producing the same net

effect irrespective of their origin. Also, this approach permits the

comparison of several system configurations based on the observed conse-

quences of failures.

The first dimension of our classification is based on the level of

the system being considered:

" system level (e.g. distributed system)

" subsystem level (e.g. node or computer level, job)

" module level (e.g. 1/0, CPU, memory, task)

* functional submodule level (e.g. multipliers, subroutine)

" micro module level (gates, instructions)

* base level

A system is considered to have a set of subsystems each of which con-

sists of a set of modules, which in turn consists of a set of sub-modules

and so on. This level classification is the same for both the hardware

system as well as the software system. Such a view allows a uniform

classification of a system's failures independent of its final implemen-

tation details. At any given level of a distributed system, the failures

are further classified into three different major classes (i) failures

associated with the processing subsystem (A 0), (ii) failures associated

with the communication subsystem (B 0) and (iii) the fai-lures associated

with application functions and the environment (C 0). The failures

associated with each of the above categories can be further classi-

fied based on the physical, logical characteristics related to both

-s0-



design and operation failures of a distributed system. Fig. 4.1

provides a detailed breakdown of one class of processing logic failures

viz. memory failure.

Our classification methodology is a generalized failure classifica-

tion for distributed systems. Such classification allows implementation

independent failure behavior of a system. This classification also re-

duces the number of failure cases to be analysed in the study of recon-

figurability of a system.

4.3 Reconfiguration

The design of dynamically reconfigurable architectures is basically

driven by two factors. One is the need to match the demands of the load

to the capacity of the system by adapting the configuration to the load

on hand. Second is the issue of enhancing the reliability and availa-

bility of a system by changing its configuration so that the effect of

the failure is bypassed. This ability of a system known as reconfigur-

ability can be degined as the systems ability to change its physical

and/or functional organization in response to changing processing require-

ments of an application or to the failures of a system.

4.4 Methods of Reconfiguration

Basically, the reconfiguration strategies suitable for either type

of reconfiguration could be classified as i) static, ii) dynamic, and

iii) adaptive reconfigurations. In stadiz reconfiguration, the change in

the system configuration may not be achieved on line. Generally, such

reconfiguration is done by suspending the ongoing system operations and

restarting the system after the desired configuration is achieved. In

this static case, the current as well as future configurations and the

-51-

Ai .....-



0'

0

4.4a

a)4. 'r

0,C. c- c

-H

00 CD'-

(A~

v-I /-52-



transition involved are known in advance. One great drawback of static

reconfiguration schemes is that they often involve significant inter-

ruption of service.

In Dynamic Reconfiguration, the changes in system configuration are

initiated without much interruption to the service. In other words, such

reconfiguration is done without bringing the system to a halt and is

usually transparent to the user. Since this is done on a dynamic basis

the status of the system after reconfiguration may not be known in ad-

vance. However, the strategies for a given situation, whether it is

recovery from a failure or changes in the processing requirements, are

known in advance. Such dynamic reconfiguration has been studied exten-

sively by several authors [KART77, MORT74, REDD78, SCHE71].

Adaptive Reconfiguration is a generalized case of dynamic recon-

figuration. In this case the process of reconfiguration tries to adopt

a particular strategy based on the current status of the system and

implements a selected strategy without any interruption to the service.

In other words, the strategy selection and its implementation are not

known in advance and the mechanism adapts to the situation so that these

mechanisms are transparent to system operation. This type of reconfigur-

ation offers the advantage of tailoring the machine to a given environment,

thus allowing optimum use of the resources. Our report deals with this

method of reconfiguration which paves the way to the ultimate goal of self

repairable, self-adaptable modular distributed computer systems.

5 Design of Reconfigurable Systems

5.1 Proposed Design Methodology

Our methodology (figure 5.1), divides the process of designing any

large scale 4istributed processing system into four major phases. They

-53-

2 ______ nnnn~ men U um n



I nul l -ca nC
I~ fl7,-"l 1 ti

IRcqu- rex-:oints

they "o0
consis-

Yes~

Tr'occss and2 attrLuute

I partitionin-

a. Idana

I TestNo

Cl Des igr

I Yes

and ~cLoto

I OK
I * J

I '*-~Os~

I5.1

I_________-54-_



I.!c I UII o

Ia d I ,U(

FUrnctLoiial

_______ . .- :P.cntat ion
m I- Im1rcna t~ ?rn Tnteroret.ation

I nt

Yrity

0 0K

Operati in, validation '4litr1an~d
and ev'aluation ~ 1ao hs

To carlier phases

Fig. 3.1- (contlnued!)

A -55-



are i) requirements and specification phase, ii) design process phase,

iii) implementation and integration phase and iv) validation and evalua-

tion phase.

Requirements and Specification Phase

The "requirements and specification phase" of the methodology starts

with informally specified user requirements and elaborates them in terms

of the design specifications. The first step in this phase is requirement

analysis, that deals with the decomposition and translation of the users'

needs and objectives into system engineering terminology. For example,

the overall requirements of a system can be decomposed into data process-

ing requirements, resource allocation and communication requirements,

reliability, availability requirements, and so on. These requirements

can further be decomposed into low level functional requirements. For

example, reliability, and availability requirements can be further de-

composed into user requirements, recovery requirements, resource require-

ments and so on. Some studies have been performed on formalizing and

automating the requirement analysis and design for large scale software

systems (PARN72, BOEH74].

The second step in the requirements phase is the specification of

the requirements. This step is concerned with the logical aspects of a

DCS and generates a set of specifications based on the analyzed require-

ments and attributes. For the successful execution of this phase, a formal

manner of specifying these requirements in terms of a specification language

is needed. The process of the specification also requires the identifi-

cation of various processes needed to support the required functions of

the system, the system parameters, and the attributes, in order to test

V. -56-



the functional consistency of a system design. This enables the early

detection of certain system design errors.

Design Phase

The second major phase of our methodology is the design phase. The

design phase starts with the defined processes which are the outputs of

the requirements and the specification phase. The major steps involved

in the design phase are partitioning of the attributes and the functions,

development of the appropriate models and their analyses, specification

of abstract functional modules, and design verifications.

In the attribute and functional partitioning step, the designer will

decompose the system into a set of interacting functions, and identify the

associated attributes consistent with the overall design requirements, and

their elaborations. The motivation for such partitioning is twofold. First

of all, functional partitioning increases the modularity and testability

and decreases the interference between processes. Secondly, the attribute

decomposition allows the isolation of important attributes from each other.

The second step in the design phase of the methodlogy is the develop-

ment of appropriate models and analysis techniques for the attributes.

This report is mainly concentrated on this step of the design methodology.

Specifically, it deals with the modelling and analysis of dynamic fault

tolerance (reconfiguration) and other related attributes, as discussed in

subsequent sections.

The third step in the design phase is the functional mapping and the

specification of abstract functional modules. The functional mapping and

specification refers to the definition of a partitioned process in terms

of input/output relations which reflect the functional requirements and

their integration. These specified functions are then integrated based

-57-



on their coupling and other criteria related to the attributes, in an

effort to check their consistency and to optimize them. This logical

design is the input to the implementation phase.

Implementation and Integration Phase

The third major phase of our methodology is the implementation and

integration phase. In this phase the functional modules are considered

together with the additional implementation dependent design constraints

which were not considered in earlier phases. This phase a).so includes

the trade-off studies to determine what functions can be implemented in

hardware and what others can be implemented in software and/or in firmware.

Another phase of our methodology the validation and evaluation phase,

considers the operation of the system and evaluates various attributes to

see whether they conform to the users' needs. If they do not, then appro-

priate modifications are initiated at the appropriate points.

The design methodology discussed above will be illustrated in Section 7

of this report.

5.2 Attribute Analysis using UGH

In order to design a reconfigurable distributed system there are

several attributes that need to be modelled and analysed during the design

phase e.g. reliability and performance. Proper modelling and analysis of

each of these attributes is the key to the development of a true design

methodology. We now present the Unified Graph model, which is a general-

ization of the UCLA model, as a suitable modelling technique for analysing

these attributes.

Definition 5.2.1:

A Unified Graph Model (UGH) is a Four tuple <G,M,CT> vhere

-58-



1. 'G' is a directed graph

2. 'M' ( N,M>) is a mapping function from a set of vertices v. E V

into a set v E V defined by a Boolean function (AND, OR, sum0

of products). M (v) specifies the logical conditions under

which vertex 'v' can initiate execution. N>(v) specifies the

logical consequence of the completion of execution of vertex v.

In the context of UGM, the execution of a vertex implies a

transition from one vertex to another releasing a token.

3. 'C' is a set of coordination constraints on set V.

4. T - {Ti 1,T1 2} represents the max, min execution time of each v

that belongs to V.

Figure 5.2 is an example of a UGM representation of the exchange of

communication between sender and a receiver. M., M2 , M3 M 4 are the

mapping functions defining various Boolean relations among the nodes. In

this particular example the process of exchanging communication is coor-

dinated through the coordination constriants defined by the nodes 'S' and

'X'. The constraint 'S' defines that the nodes A and B should hold the

tokens (i.e. sender is in SEND mode, and receiver is in RECEIVE mode)

simultaneously for the two members to communicate. Similarly, for the

system of figure 5.2 to reach the state 'X', the vertices F and E should

have the tokens simultaneously and is defined by the coordination con-

straint X --> F.E. However, complex cases of coordination arise in dis-

tributed system and only the coordination constraints defined on the set

'V' define the interrelationships and interactions between various auto-

nomous or semiautonomous subsystems.

Informally, the set of nodes 'V' represents the actions or computa-

tions to be performed or the status of the individual subsystems or

-59-



a' "u ~ f r ac', Jnu:' 1-2 !c .&-nt

(T T, I A BC - ns~j&-e roc,!ivcd

'1~~~~~ - sc:.'C~a~n sen

Maoli fntions:

M 1 S ;.A+3

M

c 16 5 * X

CoordinUaticon ccnstr -in-tc:

S -5*

xx

V.5.2 - UGM. R~r:(~ itori0C~Y ~ of ~~"'~

-60-



components. The set 'V' can in general be defined at any level of

abstraction.

The mapping function X specifies the logical condition under which

a vertex 'v' can initiate execution. The mapping function relates the

activities of the input node set and the associated arcs, to the activities

of the output node set and the associated arcs on a node 'v'.

The coordination constraints 'C' define the degree of coupling bet-

ween various subsystems. This set 'C' limits the possible states to states

of importance only. It designates what events may coexist with the same

node, and what set of inputs may be used in a given situation. There may

be several events, but only a set of them is applicable during a parti-

cular observation event (definition 5.2.2).

Definition 5.2.2

"Event of Observation":

It is the observed outcome due to the execution of a set of states

of importance. For example, an exchange of messages is an observed

outcome of certain operations in a system. Similarly, the failure

of a communication mechanism is another event of observation.

Definition 5.2.3

"State Transition Graph" (STG):

The State Transition Graph is a state transition diagram where each

state is a token state from a graph 'G' and the transitions between

the states are exactly those corresponding to execution sequences of

the token states defined by the set of elements of 'V' holding tokens

simul taneously.

-61-



Definition 5.2.4

'Event State Transition Graph" (ESTG):

An "Event State Transition Graph" is the state transition graph

corresponding to an event of observation.

There may be more than one event state transition graph corresponding

to a given event of observation. The token states associated with differ-

ent event state transition graphs are defined by different status transfer

functions and the coordination constraints associated with the UGH repre-

sentation of an event of observation.

The event state transition graph can be generated based on the event

boundary conditions in the following systematic manner.

Algorithm 5.2

Step 1: Construct the SESX ["single entry single exit"] graph from

a MEMX ["multiple entry" "multiple exit"] graph. (For

definitions of SESX and NEMX graphs see [POST 74].)

Step 2: Initialization

Clear all tokens from all arcs in A.

Place a single token on S.

Step 3: Randomly select a node i.

Set V - {V - i}

Step 4: If all the incoming arcs into the node i possess tokens

according to <4take all the tokens Map < M to M on i.

Step 5: If c0(iM belongs to M>--> S0(OM

then S 0() - S0(iM - C 0i)

Step 6: Place tokens on all s 0(1) according to

Step 7: Add s 0(M to the STG string.

-62-



Step 8: If v = 0 go to 3.

Step 9: Stop.

5.3 Application to Attribute Analysis

In order to analyse different attributes using the UGM, the system

behavior is first represented by a UGM. A system's behavior is defined

by identifying several major events pertaining to the system operations.

The mapping function 'M' and the coordination constraints associated with

these events of observation are defined. Once the major events of observa-

tions are defined, a tree is developed having observation event 'j' at the

top of the tree and the basic events participating in the occurrence of

this "observation event" (with the associated paramenters) as the branches

ef the tree.

For each major event of observation, an ESTG is first generated using

Algorithm 5.2. Then, depending on the attribute and the conditions related

to the attribute, a new state transition graph is generated. This new

state transition graph is analysed using the proper termination property

for appropriate characteristics. In the next section this issue is fur-

thur discussed with respect to the reliability attribute, to show how this

model can be used to model and analyse reconfigurability.

6. Study of Adaptive Reconfiguration

In this section the analysis of adaptive reconfiguration in a dis-

tributed environment is considered. The analysis procedure presented here

considers several of the related attributes thus relating the abstract

concepts of reconfiguration to the practical situations. There are three

basic issues related to reconfigurability (i) conditions required for

reconfigurability (ii) synthesis of reconfigurable strategies and

-63-

2 m€mmWmlmm~ ~



(iii) dynamic selection of a strategy.

6.1 Conditions for Reconfigurabilitv

In order to establish the conditions for reconfigurability it is

essential to identify the additional states and transitions introduced

by the failures and see whether transitions from such states to normally

valid states could be established. In general, a failure may lead to a

sequence of new states and paths, these states and paths represent the

several possible states and the associated arcs that may be created due

to occurrence of a failure. Intuitively, the recovery and the failure

reconfiguration involve, first the detection of the occurrence of such

new states due to a failure and then the discovery of a path that would

lead to a safe state in a finite number of steps. In addition, such a

transition to safe states in a finite number of steps implies that such

new states are finite in number and so is the number of transitions bet-

ween them. These necessary conditions for the reconfigurability of a UGM

in terms of the STG, ESTG (in this case the event is a failure) defined

in section 6.2, can be stated as follows.

Necessary Conditions for Reconfigurability (NECOFOR)

(A) The number of failed states and critical states are finite.

(B) There is no failure F1 for which the transition path of F1 has a

state transition having the same entity identification and boundary

condition as the failure FI .

(C) There exists a set of states and a transition sequence in ESTG whose

occurrence can bring the system to a safe state.

However, in a distributed system it is not just sufficient to have

these NECOFOR satisfied for the system to reconfigure and recover from a

-64-



failure. First of all, the safe states that the new arcs would reach

either from critical states or failed states may not be consistent in

terms of the coordination constraints defining the overall operation of

the system. Secondly, even if the individual coordination constraints are

satisfied there might be additional restrictions from the performance

point of view. So, it is essential to satisfy the coordination and timing

constraints, in addition to the NECOFOR. These necessary and sufficient

conditions can be formally stated as follows.

Theorem: A system represented by UGM is reconfigurable if and only if the

NECOFOR is satisfied and the associated modified state transition graph is

a consistent state transition graph.

The problem with the approach discussed so far is that in any real

system, the enumeration of STG and ESTG is a stupendous task; hence we

have to modify our analysis method.

In order to model and analyze a real system using the UGM approach,

one could start with a known set of "observation events" instead of repre-

senting the entire system in a UGM representation. These known sets of

events represent various major events with respect to different attributes.

For example, while analyzing the reliability issue when adaptive failure

reconfiguration is present in the system, one could start with a known

set of failure events such as communication mechanism failure, a processor

failure, memory system failure, 1/0 system failure, a process failure, and

so on.

In order to study the feasibility of reconfiguration, failures at

different levels of a hierarchical system are considered separately. A

failure a higher level, is first considered and a corresponding ESTG is

developed. This ESTG can be developed using different approaches discussed

-65-



in the next section. Once an ESTG is developed in terms of the lower level

failures and the associated states to the degree of resolution needed, a

minimum set of basic events contributing to the original event of obser-

vation is found. Given these basic events, one could generate a failure

behavior table describing the minimum set of basic events for each obser-

vation event of failure. This philosophy of analysis, based on the selec-

tion of certain types of observation events is consistent with the failure

classification presented in Section 4, where the failures are classified

based on the observed effect for uniform treatment of both software and

hardware as well as design and operational failures. In order to define

the major events of observation, we first describe the operation of the

system with normal operating conditions, the 1/0 relations at a gross

level, and the different attributes of importance. The next step is to

define potential major failure events for the system and classify them

as in Section 4.

On the basis of the information obtained on system operations and

expected failure events, we derive the ESTG by first defining the failure

transfer functions, which describe how the different subsystem-, or func-

tions would contribute to the occurrence of various events of observation.

From these transfer functions and system behaviour, there are several ways

to generate the ESTG, the most powerful of which is Roth's 'D'-Algorithm

which yields the basic minimum set of events contributing to a major event

of failure. Using this set of events, the ESTG is generated.

To test for the reconfigurability of the system we use the conditions

specified earlier in this section to see if the system can be recovered

from each of the basic events. A system is reconfigurable if and only if

the superimposed graph of basic events and the control graph corresponding

-66-



to an observation event is properly terminated [POST 74].

6.2 Synthesis of Reconfiguration Strategy

The essential behavior that specifies a particular reconfiguration

strategy to recover from a given failure is derived from the feasibility

analysis of a reconfiguration. A system's behavior is first modelled as

a UCM and the corresponding STG's are derived. Then the ESTGs corres-

ponding to the failure of interest are derived. The new states and the

associated transitions are also identified. Then a set of safe states

to which a possible transition can be made from the failed or critical

states are identified. Associated with these states and transitions are

a set of resources and function calls that are required. These resources,

operations, and features required for making these function calls, are

selected and specified as described below.

6.2.1 Specification of Reconfiguration Strategy

A reconfiguration strategy contains functional modules for the failure

detection and recovery together with the calls on reconfiguration function.

A typical reconfiguration strategy is described below:

FAILURE DETECT < Process>

STATUS IN < Current status >

INCOORS < Coordination constraints >

FAILURE LOCATE < Location of failure >

SELECT < strategy > FROM < Strategy set >

NEED RESOURCE < unxits > OF < resource type >

REMOVE [all) < resource type > FROM < resource set >

ADD < resourse type > TO < resource set >.

CHANGE STATUS [all) <~ resource type > IN < needed resource set >

-67-



OUT STATUS < current state -next state >

OUT COORS < input coors > AND < Function - outcoors >

RESTART < process type > OUT OF < process list >

In this typical specification of the reconfiguration process, the

invocation of FAILURE DETECT, FAILURE LOCATE, STATUS LN, INCOORS, will

detect and locate the failures and collects the current status informa-

tion and the coordination constraints respectively. Once the information

is gathered, the SELECT and NEED RESOURCE, will evaluate this information

and select a particular stratety, while NEED RESOURCE makes a request for

the needed resources. Following a strategy selection, the constructs

REMOVE, ADD, CHANGE STATUS, OUT STATUS, OUT COORS will selectively change

the resource organization, and define the output conditions to be satis-

fied after the strategy implementation, in order to maintain the consis-

tency of operation. The purpose of the OUT STATUS is to define the final

status of various states at the end of execution of a reconfiguration

call. Similarly, the-OUT COORS define the output coordination states.

After verifying this information f or consistency of operation, certain

processes are restarted by specifying through the construct RESTART.

6.2 Verification

The verification of a reconfiguration strategy involves the verfi-

cation of the consistency of operations after the reconfiguration is per-

formed together with the verification of the control embedded with the

specification of a reconfiguration strategy. This verification requires

the establishment of formal correspondence between the model and the

design of a reconfiguration strategy which can be achieved through the

definition of functions, and the transitions required for reconfiguration

i.e. the implementation of a reconfiguration strategy in terms of the

-68-



structures and operations embedded into the system. Then a reconfigur-

ation strategy is verified by constructing a transition table and check-

ing for the consistency of input/output conditions associated with the

transition table. The steps involved in the verification of a reconfigur-

ation strategy can be summarized as follows.

Step 1: Define the input relations (input states, transitions

and coordination constraints).

Step 2: Establish formal correspondence between the model and

reconfiguration strategy.

Step 3: Construct a transition table for each reconfiguration

strategy. Identify the reconfiguration functions needed,

and the associated states and the coordination constraints.

Step 4: Establish a set of safe states whose members are imple-

mented only by proper implementation of the reconfiguration

strategy.

Step 5: For every reconfiguration strategy check whether the final

states belong to the set derived in the step 4.

6.3 Location of Reconfiguration Points

6.3.1 Choice of a Reconfiguration Strategy

The adaptive reconfiguration. approach provides an ultimate solution

for highly reliable, continuously available computer system. However,

in any real system, there may be several strategies available with

varying degrees of complexity to recover from a failure. Hence the

incorporation of several reconfiguration strategies built into the system

and their choice during the system design and operation are needed to be

supported by quantitative evaluation methods. Such an evaluation should

-69-

inict 
whethe 

th deigedad 

heslete 
trteis 

oudmeth



desired Availability, Survivability and Reliability requirements (RAS)

and if so, their effectiveness.

En principle, the evaluation of any reconfiguration technique can

be done by means of modelling using either analytical approach or experi-

mental approach or a combination of both. The exact nature of the tech-

niques depends on the class and the nature of failures. These failures

may be permanent or transient in nature. In addition, there can be

failures originating from the user during the design or operation phases.

Hence any assessment of strategy should be able to cover all the aspects

of the failures or at least should be able to distinguish the influence

of various factors on the assessment strategies. In the literature

[ARNO 75, AVIZ 75, BIEAU 78, KONA 75] on evaluation models, several

Figures of Merit, e.g. Mean Time to Failure, Mission Time Improvement

Factor, Mean Time To Danger etc., have been used.

However, these figures of merit are based on certain assumptions

and system configurations. First of all, these quantitative analyses

require the knowledge of numerical failure rates which are assumed

either to be constant or have certain type of distribution such as

exponential. But seldom is the case in real systems. Also most of these

evaluation strategies either ignore transient and partial failures or

assume them to be permanent and no systematic techniques are available to

verify and validate these assumptions. The cost concept is rarely con-

sidered as an evaluation parameter except in some cases where the figure

of merit is defined interms of cost concept i.e. cost of failures and cost

of reliability (HECH 73J. WJhen redundancy and heterogeneity of different

subsystems are considered the traditional quantitative evaluation strat-

egies seem to be mathematically untrackable. In addition, some of these

-70-

-77F



evaluation strategies assume 100% coverage which is rarely valid. Even

in cases where safeguards have been designed for all physical failures

some human operator errors may cause catastrophic failures form which

there exists no auotmatic recovery.

4.3.2 Conceptual Model For Strategy Selection

Conceptually, the strategy assessment modelling can be represented

as in figure 6.1. In this model for strategy assessment, 'S' represents

safe state, 'R' represents the state in which the reconfiguration strategy

would be initiated, and 'C' represents a set of critical sta* es, while 'F'

representing a set of states in which the system -an-.ct function at an

accepted level of performance. A system may enter these 'F' states either

when the available redundancies are exhausted so that any further reorgan-

ization of resources is not possible, or when the systems performance of

functioning subsystems is below the accepted level. A direct transition

from a safe state to a failed state may also occur due to the occurrence

of a failure for which there is no reconfiguration strategy built into the

system (e.g. catastrophic human errors). This model takes a unified view

of both permanent failures as well as transient failures. In addition,

the design failures are also treated in the same uniform manner.

Representation of Transient, Permanent, Design and Operational Failures

A transient failure may damage the information of a system and may

eventually lead to a permanent system failure. The reconfiguration after

a transient failure requires the restoration of the damaged information

so that the system can continue to function properly. In many cases, the

recovery from these transient failures can be handled by reexecution of

the computations performed during its presence. In terms of our model,

-71-



.to
-1

01

--A

-72-1



this is represented by a set of states and the associated transitions.

This set of states represent the states after the occurrence of a failure,

and the transitions are the transitions associated with the failures and

the recovery actions. Failure of recovery may be due to the fact that a

transient failure may be persistent or it may have damaged the vital

information. In addition, it may also fail due to the inadequate resources

for the recovery action or may be due dependent nature or some failures.

In the model these cases are reflected by different paths taken by the

recovery mechanism as shown in the modified diagram (figure 6.2).

The permanent failures are also represented by a set of new states

and the associated transitions. They are characterized by the loss of

processing modules. The recovery mechanisms for these failures usually

involve some kind of redundancy, the higher the redundancy, the greater

the chances of recovery.

In order to reflect the true effectiveness of a reconfiguration

strategy in a distributed system, any measure such as a Figure Of Merit

needs to consider all types of failures.

6.3.3 Derivation of a Figure Of Merit

FKigure Of Merit (FOM) is a means of ordering various reconfiguration

strategies for a given failure condition. It is also a means by which we

compare two strategies. This FOM is useful throughout the design process

to guide the choice of a strategy in designing a reconfigurable distributed

system.

The Figures Of Merit for comparing different reconfiguration strategies

are influenced by several factors. One of such factors is the importance of

recovery from a particular failure in terms of the mission goal. Secondly,

-73-



r~~ o v ev

Fig. 6.2 - lo.iec jts f

-74-



one cannot assume that a reconfiguration is fault free and failures do

not occur during its implementation, and such factors should be taken

into account while deriving a Figure Of Merit. Also when more than one

strategy is available to recover from a failure, any strategy may be

selected with a finite probability. In addition, associated with every

strategy that are required. Based on these factors a Figure Of Merit can

be defined as follows:

A Figure Of Merit of a reconfiguration strategy (FOM) R is defined as

FOMR~j = V Ri F.j R C 1

where V R if the vitality factor

FR is the feasibility factor

R R is the reliability of the strategy itself

C nf is the normalized cost factor

Vitality Factor

The vitality factor is defined as the rate at which the system avail-

ability increases as the probability of selecting a particular strategy

increases. The vitality factor is a subjective estimate based on the

designer's understanding of a recovery from a particular failure on re-

source allocation, performance, and mission goal. The factors that would

influence the choice of a reconfiguration would also determine whether a

reconfiguration is needed in the first place.

Feasibility Factor

The second factor involved in defining the Figure Of Merit is the

feasibility factor associated with selection of a strategy. When more

than one alternative is available the designer prefer one strategy to the

-75-



other due to the nature and availability of the required resources. Even

if a given strategy has higher vitality factor, higher reliability and

low cost, it may not be selected bacause of lack of resources. The f.easi-

bility factor accounts for such situations.

Reliability of a Strategy

The third important factor in determining the Figure Of Merit for a

strategy is the reliability of the strategy itself. A failure may occur

during recovery as during normal operation. Hence certain reconfiguration

strategy may be more reliable than others, and this fact should be taken

into consideration while deriving the Figure Of Merit. Then the relia-

bility of a reconfiguration strategy (R r) can be defined as the probability

that the system would continue to function reliably after a strategy has

been invoked.

Several techniques can be adopted to calculate the reliability of a

path. One such technique is the approach used in fault tree analysis.

As in the case of fault tree analysis, a tree is drawn with the event of

reconfiguration as the top event and various steps or actions associated

with the reconfiguration strategy as branches of the tree. Based on the

reliabilities associated with the individual events, we could then cal-

culate the reliability of the entire tree, i.e. reliability of the recon-

figuration strategy itself.

Finally, the cost associated with the implementation of a strategy

is another factor influencing the Figure Of Merit of a strategy. In

certain cases, it may be worthwhile to contend with the suspiciously

incorrect results than trying to recover from a failure. For example,

in a batch processing or a time sharing system oriented towards nonreal

time scientific computations, it may be economical to print an error

-76-



message indicating that the results obtained are invalid since the

detection of the last failure, rather than trying to recuperate from the

failure by reconfiguration and program roll back because of the extensive

overhead involved in reconstructing the status of the processes. Such

similar considerations require the introduction of the cost parameter

into the figure of merit. However, such a cost factor depends on the

actual system conditions and the history of the failures and the recovery

because the choice of current strategy is not only based on past failure

history, but also determines the future failure and recovery sequences.

Hence, the cost factor introduced should be normalized so that is is

independent of the past history and the future consequences. Such a cost

factor is the "Normalized Cost Factor" (C nf). The normalized cost factor

of a strategy is defined as the ratio of the weighted cost associated with

that strategy to the cost associated with the reconfiguration adopted be-

fore that failure.

The calculation of a figure of merit provides a powerful tool in the

design of a reconfigurable system. It provides the designer with vital

information and guides him through the design process. Secondly, this

methodology enables the designer to cover certain known failures thor-

oughly while considering them as an integral part of the system design

approach to handle the associated complexity by shifting some of the

dynamic decisions needed during operation zo the design phase. In addi-

tion, the associated knowledge is very useful in generating a strategy

feasibility table for a given system and also in developing generalized

provable strategies that only depend on the classes of failures and are

independent of minute implementation details of a system.

-77-



From Requirements and Specification Phase

A-ttribute selection

S(Reconfigurabilit,)

.Interconnection Information FPL .-
Interface level--- Modelling-
Node level, etc. M i

Selection of features Protocols,Recon-
required figuration Control

Commands Status

Infor-mation, etc.

.Level of abstrac- Selr.ction of Design decisions

tion physical Modules " vailability, Cost

physical charac-

terist ics

.Abstract Data Structures Assumptions: PEs

f PEs failing Hierarchicali- are asynchronous,

No. of Reconfiguration zation failures are
etc. independent

Data : Availability
with zraceful

.Operational Development of the Model . degradation

characteristics- for each level Inputs: Failure

rates, Recovery

Mechanisms

Outputs: Feasi-

bility of Recon-
P figuration

.Analysis tool Analysis or
UGM the Model . Strategy vs Time

.Tradeoffs 

etc.

Interconnection Interpretation of
vs Cost of the results
Rezonfiguration

logic, etc.

-78-



I¢

TranlatetheReconfiguration

Requirements into a set -- Command Controllers,
of Abstract MIachines Station Controllers

etc.

To Requirement Ph e

-- Specification of

Abstract Mechanisms

Payoffs, Evaluation Change strategy and
and specification of

Modification abstact machine

Fig 7.1. Application of design methodology

-79-



7.Study of a Candidate Configuration

In this section we present an overview of a detailed design that was

made of a candidate configuration based on the concepts summarized in

earlier sections.

The configuration considered here taKes the form of multiple process-

ing elements connected via certain interconnection mechanisms.

7.1 Application of Design Methodology

The overall system requirements for the candidate configuration can

be divided into data processing requirements, resource allocated, sched-

uling requirements and so on. Because of the distribution of processing

functions among Tarious processing nodes, one could expect that inter-

processor communication will play a major role in system operation. Here

we consider only the reliability and availability requirements and their

influence on the architecture of the communication subsystem.

Figure 5.7 illustrates the application of the design methodology

discussed in Section 5 to our problem.

7.2 Functional Requirements of the Communication System

The functions of the communication subsystem pertain to all the

operations concerning the interprocessor communication and the associated

failure detection and recovery operations. These include the intercon-

nection mechanise, transmit function, receive f'mnctions, message switching

dealing with message generation, checking etc., control functions dealing

with synchronization, and changing the physical configxration, recovery

functions dealing with failure detection and reconfiguration, and pro-

cessing element dependent functions dealing with the memory access, in

.erruprs etc. The UG-I representation of these functions is given in

-80-



wS

II

.. I

and withut Confiuration Control n~o

rE)

MA !.C )Interr-upt

lnter-

-8 1 . .. ".. " .. '._

ctio
i

Fig 7.2. UG° Representation of Comunication Mechanism- 
with

and w C -ontro Func

- --,1-.

.. .. . .. .



Loop

r--! l-..--... _

I I
xmitireceive adapter I1 i

] it
I' I

I I! 1
IiI
j 113

I 6 Microstore

i Ii I

I i
11 4

ti

I/o PE/M0

1. Signaling lines between CCC and Loop.
2. Remote Interface messages to and fro from interface functions.
3. Messages from PE to remote stations (application dependent).
4. Messages from CCC to local PE.
5. State Linkages between interface functions.
6. Microstore to interface functions.
7. Messages between I/O and PE or with secondary loop.

Fig.7.3. Data Paths of a CCC

-82-

41 .___



Fig. 7.2 and the associated data paths in Fig. 7.3.

7.3 The Interconnection Mechanism

There are several interconnection mechanism available such as single

shared bus, system busses, crossbar switch, loop, mesh, etc. to inter-

connect the processing elements. [ANDE 75]. Of all these, the loop type

of interconnection mechanism is chosen for our system because of its

obvious advantages of simplicity, modularity and expandability, simple

allocation and control structures, simple interface, and low cost. How-

ever, this interconnection mechanism has the limitations of low reliability,

availability, and survivability, as the loop failures can be catastrophic.

It also has limited bandwidth. The use of loop technology for data com-

munication has been extensively studied and several modifications have

been proposed to alleviate some of these limitations [YUEN 72, PIER 72,

FARB 73, ZAFI 74, FRAS 74, REAM 75]. However, none of these methods can

reconfigure for catastrophic failures with decentralized control.

The processing nodes are connected by means of the proposed loop

interconnection mechanism via the interface units called Communication

Coordination Controllers. The Communication Coordination Controller (CCC)

connects various processing elements, and performs various communication

functions related to the interprocessor communication. Functionally, a

CCC consists of five functional modules i) Transmit/Receive unit (TR),

ii) Input/output unit (10), iii) Configuration Control unit (CC), iv)

Message handler (MH), and v) PE/Memory dependent control unit (PM). The

interprocessor communication is facilitated through a protocol defined in

terms of certain system wide primitives.

-83-

t-. m m'~ . __



7.4 UGM Representation of the Communication Coordination Controller (CCM

The normal operation of the communication requires the Ifunctions

related to transmission and reception, message handling, and functions

related to system control and processing elements for its successful

operation. Figure 7.2 is an MIC~ representation of the primitive oper-

ation of the communication subsystem when the failures requiring recovery

occur. State "S" represents the starting of the operation. When the

state "S" is executed as well as the proper signal from the input/output

control state "A!' is received, the DMA interaction state "C" and the

PE/Memory state "D" are initiated. Once the message is received, the

operation is terminated by executing the state "X". Similarly, the trans-

mission is initiated when appropriate states are executed causing the

execution of the state "E". Additional states and the transitions are

introduced when the transmission and reception of the control information

and the data are separated. The data paths between various functional

units of CCC are shown in Figure 7.3. Now in order to incorporate the

function of reconfiguration control and to change the system configura-

tion in response to failures, additional states and transitions can be

introduced (shown in dotted box).

7.5 Study of Failure Behavior and the System Design

In order to study the failure behavior of the communication subsystem

it is first essential to identify several types of failures that are likely

to occur in the example system. These failures may be due to the failure

of the loop, or the interface unit (CCC), loss of communication primitives

such as SYNC, SOM and related system wide control primitives, loss of

communication functions, loss of data, parity errors, bit failures in

crucial registers, failures in status words etc.

4f -84-



The role of a CCC in the failure behavior and recovery of the example

system can be studied by first representing the functional behavior and

identifying the failures associated with several functional units of a

communication subsystem as discussed below.

Functions:
Establish electrical contact between all nodes via loop 1 (LI)

via loop 2 (L2)

Internal Events:
Loop 1 works (Ll)
Loop 2 works (L2)
Loop 1 is open (Li)
Loop 2 is open (L2)

Transmit/receive control unit (TR)

Functions:
In bound clock extraction
Bit encoding and decoding
Loop checking
Detection of Sync/discard
Generate syne pattern
Detection of code violation
Nak generation
Parity generation/checking

Internal Events:
In bound clock extraction ok (TRI)
In bound clock out of sync (Tl)
Bit encoding and decoding ok (TR2)
Bit encoding and decoding error (TR2)
Loop check ok (TR3)
Loop check not ok (TO)
Sync detector ok (TR4)
Sync detector fails (TR4)
Sync generator ok (TR5)
Sync generator fails (TR5)
Code violation detector ok (TR6)
Code violation detector fails (TR6)
Ack/Nak generator ok (TR7)
Ack/Nak generator fails (TR7)
Parity generator/detector ok (TR8)
Parity generator/detector fails (T8)

The module TR can cause failure of correct transmission of informa-

tion due to its failure to perform any of its functions. The consequences

of these failures may be erroneous transmission/reception of either data

-85-



or control information. The failures associated with this module are

identified by identifying the corresponding failure states and the

transitions. Similar analyses are made for Input/Output Control (I/0),

the Configuration Controller (CC), the Message Handler (M) and the

PE/Memory Controller (PM).

In order to develop recovery mechanisms to reconfigure the system

from the identified failures it is essential to derive all the basic

failure events contributing to the failure of successful communication.

At the very top level unsuccessful communication may be due to either

loop/interface (EEE) failure or message failures or both. This can be

written as

communication failure

+

loop/interface failure message failures

The loop/interface failure, in turn, may arise from several causes:

loop/interface failure

+

physical failure of loop physical failure in CCCI +

loopl loop2 -RTR 10
fails(Ll) fails(L2) I I

, * *

TR2,TR5 MH6,MH4 I01,I06

In generating the basic events causing an observed failure event,

S and R refer to a sender and a receiver respectively. The bar C-) on

-86-



any event refers to its failure mode. During normal operation both the

loops as well as the physical functional units do not have any failures

associated with them that can inhibit an electrical contact. Then the

corresponding mincut set can be written as follows:

mincut set (during normal operation)
both loops work (LI L2)
TR units of both sender and receiver work (TR TR )
MH units of both sender and receiver work (MHs HMr)
1O units of both sender and receiver work (IO I0r)

There are 5 mincut sets when no electrical path exists, of which an

example is

loops work (Ll + L2)
TR unit works (TR)
clock unit fails (MRH6)
buffer unit works (MH4)
sync generator works (IO1)

In order that the system can recover from the physical connectivity

failure, it is necessary to recover from all the basic failure events

defined by the mincut sets corresponding to a major connection failure.

Our proposal for the candidate configuration improves reliability

by selecting a dual loop (Fig. 7.4 a,b) with "fold back". Normally, one of

the loops is active. When a FOLD command is received by a CCC, it tries

to transmit on both loops, while trying to receive on the active loop and

monitoring the other. In order to perform these actions, several addi-

tional states and transitions must be introduced in the UGM representation.

STATES: configuration mode, sos mode, folding mode, switching mode,

interface in, interface idle, system fail, power on 'xmit on loop 1,

'xmit on loop 2

TRANSITIONS: system fail, attention, fold, switch, monitor, loop

choice, internal feedback, reset, interface enable, local PE on/off,

unfold, sos signal

-87-



.. ......

Fl;. .4a y- A ~W ECc: C zC?~~z:

IInlput/ output ofg

B C

Message Handling

I D
1/10 and Memory

I ~Reladted FunctionsI

PEmory

Fig. 7.4b.The Structure of a CCC.



Based on the identified failures and transitions, reconfiguration

strategies could be specified. The entire process is repeated for

Message Transfer failures.

The next step is the identification of the states and transitions

in the functional controllers associated with reconfiguration. For the

Transmit and Receive Unit, as an example:

STATES: sender idle, sender generate, receiver idle, receiver

interrupt, req. to send, clear to send, sync detect, receiver

error, loop busy, sync generate, output word ready, input word

ready

TRANSITIONS: interface valid, interface hold, local

In order to reconfigure the system for failures, it is essential

to detect and locate the failures. When a failure has occured and the

CCC receives a failure signal, the CCC stop the ongoing communication

and initiate the failure location and recovery mechanisms. The CCC is

designed to identify several different types of failures within the

communication subsystem based on the particular type of failure, the

appropriate failure location programs are initiated.

7.6. Evaluation of proposed design

The following definitions of events are used in the analysis.

Let n be the number of processing nodes connected by a dual loop

L be the number of loop segments and L -n-i

D ccc is the fraction of the time that a CCC is non operational

d lsis the fraction of the time that a loop segment is non operational

q is the prob. of a loop segment failure and p+q 1

A be the availability of the node i



X,Y,Z be the probabilities that a node i, the nodes I to i, and

i+l, to n are available respectively.

If we assume that all CCCs are functional then the communication link

availability is dictated by the loop reliability. The connumication

link is said to be operational if a communication path can be established

from a given node to any other node in the system. It is given by

L()
A(single loop) = P  (i)

A(dual loop) = 2p - p (2)

A = 2p L _ p2L + Lp2(i-1) q2 (3)
A(with folding) ~ -~+L

However, in real systems the availability of the CCCs also dictate the

availability of the over all communication subsystem.

A loop segemnt is operational with a probability (1-Ds), and the

CCCs are operational with a probability (l-D ccc). Since we are assuming

that the software for loop control and communication is operational, the

probability that any given loop segment (i) is operational is given by

X - (l-Dls)(l-D cc)2 (4)

probability that the loop segments between 1 to i nodes are available

is given by

i-l i
Y = (1-Dis) (-D ccc ) (5)

probability that the loop segments between i+l to n nodes are available

is given by

L-i-l L-i
Z - (l-DIs) (l-Dccc) (6)

Then the probability that a node i of the system is operational is given

by

-90-

V2 --o



A. ZI YZ + Y(l-Z) + Z(l-Y)l (7

The equation (7) yields the availability of a node in the example design.

As can be seen from the equations, the expression for availability is

quite complex. Nevertheless, it provides the designer with a means

of evaluating the proposed design. A more refined analysis would require

consideration of the feasibility and cost factors.

8. Summary

In this report, we have discussed a systematic method to evaluate

and verify the performance of concurrent systems. The system to be studied

is first modelled by a Petri net. Based on the Petri net model, the system

is classified into either (1) a consistent system, or (2) an inconsistent

system. A consistent system is further subclassified into: (i) a decision-

free system; (ii) a safe persistent system; (iii) a general system. The

system classification and the results are summarized in Figure 8.1. The

performance of decision-free systems and safe persistent systems can be

computed quite efficiently. In the case of general systems, we have proven

that the verification of system performance is NP-complete. An approach

for computing the upper and lower bovnds cf the performance of a conserv-

ative general system i.s proposed. However, the bounds produLed may be

loose. For a non-conservative general system, no good heuristics are

known. Further research is needed.

In the area of system deadlocks, we have studied different analysis

techniques for system deadlocks. In particular, we have concentrated our

discussion on deadlocks caused by conflicts in mutual exclusive accesses

to resources with the constraint that each resource type has only one

member. This includes deadlocks in concurrent systems which use binary



semaphores, critical regions and/or monitors as their synchronization

mechanisms. A formal graph model (the request-possession graph) is

developed to study deadlocks in these systems. Based on the model, the

necessary and sufficient conditions for deadlocks are derived. It is

found that determining the safety of a system is NP-complete. A deadlock

detection procedure which can be executed in 0(-' ka ) steps is developed,

where k is the number of critical regions and/or monitors, and n is the

number of references to these critical regions and/or monitors. Based on

the procedure, a systematic approach for the construction of deadlock-free

systems is developed. In that approach, critical regions and/or monitors

are grouped into sets. The. deadlock-free condition within each set is

ensured by preanalyzing the system by the deadlock detection procedure.

The deadlock-free condition among sets is guaranteed by imposing a linear

ordering among the sets.

In distributed data bases, due to the inherent communication delay,

it is not easy to obtain a consistent view of a system. We have developed

three deadlock detection protocols (1) a two phase deadlock detection

protocol; (2) a one phase deadlock detection protocol; (3) a hierarchical

deadlock detection protocol. In the first protocol, two status reports

have to be sent to a control node from each site before a deadlock can be

determined. In the second protocol, only one status report from each site

is required. However, mare information has to be kept at each site and

has to be sent to the control node each time. Based on the second protocol,

a hierarchical protocol is developed. The network is divided into clusters.

Status reports are preprocessed by the conzcrol node of each site before

they are sent to its parent. In this way, the communication overhead of

the deadlock detection procedure is reduced.

-92-



In the area of fault-tolerant distributed computer systems, we have

tackled design problems related to reconfigurable distribited computer

systems to increase their reliability, availability and survivability.

We have investigated several concepts such as characterization of flstri-

buted systems and the associated failures, a systematic design approach

and failure recovery via reconfigurability. Existing theories of failure

detection and recovery fall short of their applicability to distributed

computer systems as they failed to advance beyond the level of loyic gates.

In addition, these theories are developed with several idealistic assump-

tions which are seldom valid in the design of large scale systems. We have

also developed an implementation independent failure classification in

distributed computer systems. This classification which is based on the

observed effects of failures rather than their causes would enable the

system designer to deal with all possible types of hardware and software

as well as design and operational failures. Moreover, various concepts

su-h as feasibility of reconfiguration, and event of observation have

been defined and discussed. A method of representing an event of observa-

tion in terms of the defined Unified Graph Model is described. The feasi-

bility analysis then establishes a set of conditions that should be satis-

fied for a given system operation represented by a UGM, to recover 4rom a

failure. In addition, we have discussed the methods of specification and

verification of reconfiguration strategies. A specified strategy is

verified by verifying the control embedded into the specification of a

strategy, and the consistency of operations after reconfigurat.on is per-

formed. A quantitative measure (figure of merit) is also defined to

compare and select a reconfiguration strategy.

Finally, we have demonstrated the applicability of various concepts

-93-



AD-A086 690 CALIFORNIA UNIV BERKELEY ELECTRONICS RESEARCH LAS F/'6 q/2
THE DESIGN METHODOLOGY OF DISTRIBUTED COMPUTER SYSTEMS. WI
MAY 80 C V RAMAMOORTHY AFOSR-78-3630

UNCLASSIFIED AOSR-TR-80-0542 NL

UummmnK



11I12.2

11111= 1111-411.6I



and techniques developed through a detail design of an example distributed

system. The goal of this system is to have built in reconfiguration features

for failure recovery. First the proposed design methodology is applied to

define detail architecture. In this system the reconfiguration is achieved

by sending reconfiguration commands to various PEa through their CCCs.

The CCCs themselves are self checking. Finally, failure behavior of the

proposed system is studied and reconfiguration strategies for certain

failures are derived.

However, this study on the design of reconfigurable distributed

systems is based on certain assumptions and much remains to be done. One

of the assumptions is that the designer has the knowledge of failure

behavior of the system being designed. Secondly, this study is qualita-

tive in nature and is based on subjective decisions based on the designer's

understanding of a system being designed. More work needs to be done to

incorporate the quantitative aspects. For example, the quantitative aspects

can be incorporated on the study of strategy selection and on the effective-

ness of reconfigurability. This report attempts to incorporate observa-

bility as a design parameter. More detailed study is needed to quantify

and specify observability in terms of RAS requirements. The key factor

for the success of a reconfigurable distributed computer system is the

built in intelligence for self checking and recovery with distributed

control. This is demonstrated through the design of the example system,

the study of which is by no means complete and a more detailed study on

its testability and feasibility of Implementing CCC as an 1.8I element is

warranted. It is also important to study effectiveness of various strategies

on the communication. Last but not the least, the distributed operating

system issues are not discussed explicitly, but requires a detailed study of

these issues for the success of a truly rcomfigurable distributed computer system.

t: "94-



Bibliography

[AHO 76] Aho, A. V., Hofcroft, J. E., Ullman, J. D., The Design and

and Analysis of Computer Algorithms, Addison Wesley, 1976.

[AHU 79] Ahuja, V., "Algorithm to check Network States for Deadlock,"

IBM J. Res. Develop., Vol. 23, No. 1, January 1979.

[AGE 75] Agervala, T. and Flynn, M. J., "On the Completeness of Repre-

sentation Schemes for Concurrent Systems," Conference on Petri

Nets and Related Method, M.I.T., Cambridge, Massachusetts,

July 1975.

(ARM 76] R. G. Arnold and E. W. Page, "A Hierarchical Restructurable

Multipurpose Mini Processor Architecture," Proc. 3rd Symp. on

Computer Architecture 1976.

[AVI 71] A. Avizienis, "The STAR (Self Testing and Repairing) Computer:

Investigation of the Theory and Practice of Fault Tolerant

Computer Design," IEEE Trans. on Computers, November 1971.

[AVI 75] A. Avizienis, "Architecture of Fault-Tolerant Computing Systems,"

1975 Int. Symp. on Fault-Tolerant Computing FTC-5, June 1975.

[BEA 78] M. D. Beaudry, "Performance Related Reliability Measures for

Computing Systems," IEEE Trans. on Computers, June 1978.

[BOE 74] B. W. Boehm, "Some Steps Towards Formal and Automated Aids to

Software Requirements Analysis and Design," IFIPS Proc., 1974.

[BRI 72] Brinch Hansen, P., "Structured Multiprogramming," Comm. ACM,

Vol. 15, No. 7, July 1972.

[BRI 73a] Brinch Hansen, P., "Concurrent Programing Concepts," Computing

Surveys, Vol. 5, No. 4, Dec. 1973.

(BRI 73b] Brinch Hansen, P., Operating System PTinciples, Prentice-Ball,

Englewood Cliffs, N. J., 1973.

'I____________f

- -



[COF 711 Coffman, E. G., Jr., Elphick, M. J. and Shoshani, A., "System

Deadlocks," Computing Surveys, Vol. 3, No. 2, June 1971.

[COM 711 Commoner, F., at. al., "Marked Directed Graphs," J. of Computer

and System Science, 5, 1971.

[DIJ 71] Dijkstra, E. W., "Hierarchical Ordering of Sequential Processes,"

Acta Informtica, Vol. 1, No. 2, 1971.

[FLO 62] Floyd, R. W., "Algorithm 97, Shortest Path," Comm. ACM,

5 (1962) 345.

[FER 78] Ferrari, D., Computer Systems Performance Evaluation, Prentice-

Hall, Inc., Englewood Cliffs, 1978.

[GOS 71] Gostelow, K. P., "Flow of Control, Resource Allocation, and the

Proper Termination of Programs," Ph.D. Dissertation, School of

Engineering and Applied Science, University of California,

Los Angeles, Dec. 1971.

[HAC 75] Hack, H., "Decidability questions for Petri nets," Ph.D. Thesis,

Dept. of Electrical Engineering, M.I.T., Cambridge, Mass.,

Dec. 1975.

[HAV 68] Havender, J. W., "Avoiding Deadlock in Multitasking Systems,"

IBM System J., 2, 1968.

[HECH 73] H. Heckt, "Figure of Merit for Fault Tolerant Space Computers,"

IEEE Trans. on Computers, March 1973.

[HOA 74] Hoare, C.A.R., "Monitors: An Operating System Structuring

Concept," Com. ACM, Vol. 17, No. 10, Oct. 1974.

[NOL 71] Holt, R. C., "On Deadlock In Computer System," Ph.D. Thesis,

Dept. of Computer Science, Cornell University, Itaca, N. Y.,

Jan. 1971.

{IM& 661 Karp, I. M. and M:ller, t. I#, "Properties of a model for



Parallel Computation: determinancy, termination, queueing,"

SIAM J. Appl. Math. 14, 6, Nov. 1966.

[KAR 72] Karp, R. M., "Reducibility Among Comfinatorial Problems,"

Complexity of Computer Computations, Plenum Press, New York,

1972.

[KAR 77] Kartashev, S. I. and Kartashev, S. P., "Designing of LSI

Modular Computers and Systems," MIMI 77, Proc. of Int. Symp.

on Mini and Micro Computers, Montreal, November 1977.

KON 781 Konakovsky, R., "Safety Evaluation of Hardware and Software,"

To be Presented at COMPSAC, November 1978.

[LIE 76] Lien, Y. E., "Termination properties of generalized Petri nets,"

SIAM J. Computer 5, 2, June 1976.

[LEH 761 Lehman, M. M. and Parr, F. N. "Program Evolution and its

impact on Software Engineering," Proc. of the 2nd Int. Conf.

in Software Engineering, Oct. 1976.

[MOR 74] Mortelmans, J., "An Investigation of a Parallel Reconfigurable

Processor," Ph.D. dissertation Tech., report no. 3606-11, Stanford

Electronics Laboratories, Stanford, March 1974.

[MUR 77] Murata, T., "Petri Nets, Marked Graphs, and Circuit System Theory,"

Circuits and Systems, Vol. 11, No. 3, June 1977.

[PAR 72] Parnas, D. L., "On the Criterias to be used in Decomposing Systems

into Modules, Com. of the ACK, Vol. 15, No. 12, Dec. 1972.

[PIT 77] Peterson, J. L., "Petri nets," Couputing Surveys, Vol. 9, No. 3,

Sept. 1977.

(POS 74] Postal, J. B., "A graph Model Analysis of Computer Comunication

Protocols," Ph.D. Dissertation, Computer Science Dept., University

of California, Los Angeles, Jan. 1974.

" A-

- . C-



(RED 78] Reddi, S. S. and Feustel, E. A., "A Restructurable Computer

System," IEEE Trans. on Computers, Jan. 1978.

[5CR 71] Schell, R. R., "Dynamic Reconfiguration in a Modular Computer

System," Ph.D. dissertation M.I.T., 1971.

[ZAP 74] Zafiropulo, "Reliability - A key Element in Loop Systems,"

Int. Conf. on Digital Commications, Zurich, 1974.

HIM



I
I


